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Abstract. It is demonstrated that several series of conformal field theories, while satisfying
braid group statistics, can still be described in the conventional setting of the DHR theory,
i.e. their superselection structure can be understood in terms of a compact DHR gauge group.
Besides theories with only simple sectors, these include (the untwisted partof) orbifold
theories and level-tw@&o(2N) WZW theories. We also analyse the relation between these
models and theories of complex free fermions.

1. Introduction

In local relativistic quantum field theory, thieision rulesencode the basis independent
features of the composition of superselection sectors. When the theory enjoys permutation
group statistics, as is, for example, the case in four spacetime dimensions, then—under
standard assumptions which are motivated by physical principles such as causality (see e.g.
[1]))—the fusion rules can be studied with the help of the DHR theory [2—4], implying that
the composition of sectors is governed by a compact group [5]DHHR gauge group

More precisely, the fusion ring of the theory is isomorphic to the representation ring of the
gauge group. On the other hand, quantum field theories in spacetimes of low dimensionality
generically possess braid group statistics. As a consequence the role of the gauge group is
taken over by a much more complicated structure, which is commonly called a quantum
symmetry, and for which no generally accepted description is available yet.

The purpose of this paper is to demonstrate that several classes of low-dimensional
guantum field theories, while satisfying braid group statistics, can nevertheless be described
in the conventional DHR setting. The models in question are certain rational conformal
field theories. A necessary prerequisite for such a description to work is that the statistical
dimensionsd, of all sectors are integers,

d, €7 foralla. (1.2)

In the particular case that all sectors are simple in the sense that they have statistical
dimension 1, the relevant braid group representation is one dimensional and the fusion ring
is nothing but the group ring of a finite abelian group. For these ‘abelian’ theories it is
rather straightforward to interpret the relevant abelian group as a DHR gauge group.
However, as we will show in this paper, a DHR interpretation is even possible for series
of rational quantum field theories which satisfy (1.1), but for which sectors with statistical

& Heisenberg fellow.
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dimension larger than 1 appear. More specifically, we congideries of models which

are labelled by a natural numbé&f € N, such that there are four sectors of statistical
dimension 1 andV — 1 sectors of statistical dimension 2. In conformal field theory, two
different realizations of this series are known: first, the untwisteectors of ‘orbifold
theories’ of conformal central charge= 1 (see e.g. [7]), and second, the untwisted sectors
of WZW theories [8] that are based on th&(2N) current algebra at level 2, which have

¢ = 2N—1. Both of these realizations can be understood in terms of a reduction of other
series of conformal field theories which hav®y Zectors, each of statistical dimension 1,
namely of thec = 1 theories that describe a free boson compactified on a circle of suitable
radius, and of thee = 2N—1 WZW theories based osl(2N) at level 1, respectively.
Accordingly, we will start our discussion with an analysis of those ‘abelian’ theories.

As it turns out, all the theories just mentioned are closely related to theories of cgmplex
free fermions. In establishing these relations, an important role will be played by various
types of DHR gauge groups. We would like to mention that the description in terms of
fermions has several advantages with respect to a formulation via free bosons, which for
these theories exists as well. For instance, one only has to deal with polynomials in the
basic Fourier modes rather than with the exponentials that appear in the vertex operators
of the bosonic formulation. In particular, there is a rather simple characterization of the
observables, which will be described in section 6.

Concerning the free fermion theories, it is already worth while to be a bit more specific at
this introductory stage. We consider a Fock representation of the canonical anti-commutation
relations (CAR) which is characterized as follows. We fix (once and for all) a positive
integer N. On the Fock spacg((CAR) = H(CAR.2N) there operate the Fourier modéisand
c (ie{l,2...,2N}andr € Z + %) of 2N complex free fermions. These modes satisfy
the relations

{6l cl} =861

b6} =0={c, !} (1.2)

and there is &-operation (an involutive automorphism), which acts on the modes as

(i) =c,. (1.3)

r —r

The Fock spacé{(“*R itself is defined by the properties that it contains a unique (up to
a phase) vacuum vecttf2) € HAR on which the mode#! and ¢! with positive index

r act as annihilation operators, i.e. for al=1,2,...,2N and allr € Ng + % we have
bl|2) = c.|2) = 0, while the modes with negative indexact as creation operators such
that their successive action on the vacuum provides a dense subspace.

1 Another example has been studied in the appendix of [6].

i The term ‘untwisted’ refers to &,-gradation of the full fusion ring of these conformal field theories. The

N — 1 untwisted sectors form a sub-fusion ring of the full fusion ring, and it is this subring we consider here. In
addition there are four twisted sectors of statistical dimensi@n. Clearly, with our methods we cannot study
these twisted sectors, except possibly whéns a square (for the latter case see the speculations at the end of
the paper). Note, however, that in the DHR framework no recourse to concepts like modular invariance which do
not have an immediate physical interpretation is needed. Accordingly, while the twisted sectors must be included
when one wishes to construct a modular invariant two-dimensional conformal field theory, in our present study of
one-dimensional chiral conformal field theories we are free to restrict to the sub-fusion ring of our interest.

& There is one other known series of rational fusion rings satisfying (1.1), namely those describing the untwisted
sectors of the level tw@o(2N+1) WZW theory. Using the results of [9], these could be analysed along similar
lines, but involving an odd number of real free fermions. However, some of the arguments turn out to become
more involved, and we refrain from delving into these complications here.
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Given the fermion Fourier modéé andc’, we can define local and global CAR algebras
as follows. Forf € L?(S*; C?V) we set

2N 2N
b(fyi=) Y fib and  e(f)i=) Y fle (1.4)

i=1 reZ-ﬁ-% i=1 reZ-ﬁ-%

where f'(z) = Y_,5,1/2 ., 2" is the Fourier decomposition of th¢h component of the
function f (the circle S* is considered as the unit circle in the complex plane, so that
z=¢€% e St with —7 < ¢ < 7). For open intervald c S' we define the local CAR
algebrasCAR(/) to be the von Neumann algebras generated by elenigrfts and c(g)

with f, g having support in/,

CAR(I) = {b(f), c(9)| f. g € LA(1; CP)}". (1.5)

(The prime stands for the commutant in the algebra of bounded operatGt§6R. Note

that the bicommutant of a set of operators then actually coincides with the von Neumann
algebra they generate.) By construction, for any pair of open intedyals with I, C I,

we have an inclusio@AR(/;) ¢ CAR(/Iz), which is inherited from the natural embeddings

of the L? spaces. The global CAR algebra is defined as the norm closure

CAR := | J CAR() (1.6)
leJ*

of the union of local algebras, whe(g* denotes the set of those open intervals S*
whose closure does not contain the point (say) —1.

This paper is organized as follows. In section 2 we summarize some features of the
DHR theory and study the interplay between the sector decompositions that arise from
embeddings of gauge groups. In section 3 we present the sector decompositions of the
¢ =1 ‘circle’ conformal field theories with ¥ sectors and of the level-oné(2N) WZW
theories and interpret them in terms of DHR gauge grodige. The relation between
these theories and the CAR algebras defined by (1.2) is demonstrated in section 4. When
the Z,y gauge symmetry of these theories is extended by a suitable further automorphism,
one arrives at a description of the= 1 orbifold and the level-twago(2N) WZW theories
with N+7 sectors; these theories and their connection with the CAR algebra is analysed in
section 5. Finally, in section 6 we present the Fourier modes of the observables, expressed
in terms of the Fourier modes of the free fermions.

2. DHR sectors and embeddings of gauge groups

Let us briefly recall some facts about the DHR theory [2—4] of superselection sectors. We
are dealing with chiral conformal field theories, so that the relevant spacetisietise unit
circle. To apply the DHR theory to this situation, one associates to each infervai* a

local field algebrag(/); this is a von Neumann algebra which acts on some Hilbert space
‘H in such a way thatl; c I, implies §(I1) C §(I2). The global (or quasiloca) field
algebra, which is defined as the norm closure

§=Usw (2.1)
IeJg*
of the union of all local field algebras, acts irreducibly &n Here as in (1.6)7* denotes
the set of open intervals i§* whose closure does not containl € S. The Hilbert
spaceH carries a strongly continuous representatrof the spacetime symmetry group
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SU (1, 1) such that the generatadr, of rotations is positive and the eigenvalue zero belongs
to a unique (up to a phase) vacuum ved@j € H (see e.g. [10, 11]). The field algebras
transform covariantly with respect ®. Furthermore}{ also carries a strongly continuous
representatiol/ of a compact grouys, called the DHRjauge groupwhich commutes with

R and leaves the vacuum vector invariant, and which transforms each local field algebra
into itself. Local observable algebraare the fixed point algebras of the field algebras with
respect to the gauge group,

A =F(N° :=FA)NUGY (2.2)
and the global observable algebra is
A=A (2.3)
IeJ*

so that2l = 3°. Note that while all local algebras are von Neumann algebras, the global
algebras are onlg*-algebras. Fields are relatively local to the observables, and this implies
in particular locality of the observables.

Under these (and a few further standard) assumptions, the DHR theory tells us that the
Hilbert spaceH decomposes as

H=EH.®C* (2.4)
e

with respect to the action ¢i. HereH,, are pairwise inequivalent irreducibf-modules,

called thesuperselection sectar§ denotes the group dual @f (i.e. the set of irreducible
characters ofG, which constitutes a basis of the representation ring:pfandd, is the

dimension of the irreducibl&-representationr, with character e G. The gauge group
G acts on the multiplicity spac€® by the representation,, i.e.

U(g) = @ 1y, ® 74 () forall geG. (2.5)
aeG
Next we investigate what happens when we are given two different DHR gauge groups
G and H which act on one and the same field algeprarhen there are two decompositions

PH.eCc* =H=PH, &C" (2.6)

aeG acH

of the Hilbert spaceH with respect to the fixed point algebrg§ and §”, respectively.
Now consider the situation th&f c G and that the action off is defined by the restriction
of U from G to H. It is not hard to see that the decompositions (2.6) are then related as

H, = PH. @ C" 27)

aeG

where the branching coefficient§ are defined through the restriction

res; (o) = P g (2.8)

acH

of irreducible G-representations, to H-representations, or equivalently, through

indf () = @ nima (2.9)

aeG

by Frobenius reciprocity. In other words, the superselection setforabelled bya € H,
are related to the sectofs,, o € G, according to the induction fror# to G.
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We are particularly interested in the specific case wiérie embedded diagonally into
G=HXxH. ThenG = A x H, so thate € G can be considered as a pé&ir,ay) with
a1, ap € H. It follows that

Mg =N 0 = Nyay (2.10)
whereN, ¢ are thefusion coefficient®f H, defined by the tensor product decomposition
T, Qmp = GB 5 TTe (2.12)
ceH

of irreducibleH -representations. This observation applies in particular to the situation where
the field algebr&§ has the structure of a tensor prodgcte §1) ® T of field algebras

which possess isomorphic DHR gauge groups, i.e. for which the associated observable
algebras are

Q[(l) = (S(l))H‘l) Q[(z) = (3(2))1-1(2) with H(j_) = H(z) = H. (212)

In this case the field algebr@ acts in a canonical manner on the tensor proddct
HY @ H®P of Hilbert spacesH®™ and H®, which under the action of the observable
algebras(;, and®l;, decompose into sectors as

HO = @ HY @ Cde and H? = @ HP @ Cd (2.13)
acH acH

respectively. It follows from the result above that under the action of the diagonal subgroup
of Hyiy x Hz), H decomposes as

H=PH.eC" with H,=P H'@HP @CW".  (2.14)
acH b.ceH
Below we will encounter the specific case of cyclic gauge gréug Z,y = Z/2NZ.

Then alsoH = Zyy; thus the labels € H can (and will) be considered as integers defined
modulo 2V, i.e. H = {0, 1, ..., 2N — 1}, and the fusion coefficients reaq,” = 8,1 . for

a,b,c € H. Therefore the decomposition (2.14) redds= D.cz,, Ha With
=P H'eH?, (2.15)
bEZQN
in particular, the vacuum sectét, splits as
Ho= P HP @ Hiy_,- (2.16)
HEZZN

3. ¢ =1 and WZW theories with Z,x fusion rules

For intervalsI c S* we denote byBosy (1) the local observable algebras of the= 1
conformal field theory with & sectors that corresponds to a (chiral) free boson compactified
on a circle of appropriate radius. According to the results of [12], the algdhwag (1)

are the von Neumann algebras that are generated by local bounded functiongHf a
current and of a conjugate pair of Virasoro-primary fields of conformal dimensieaN.
Similarly, we denote byL,y (/) the local observable algebras of the WZW theory based on
thesl(2N) current algebra at level 1. The corresponding glatyahlgebras will be denoted
by Bosy and SL,y, respectively, and the associated field algebragfys) = §sos:2n)

and §sy = FsLawn), respectively. Unfortunately, while explicit expressions for localized
fields are available in the = 1 case [12], to the best of our knowledge they are not known
for the WZW theories. However, both for the= 1 and the WZW theories, ‘point-like
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localized’ unbounded field operators can be obtained by the vertex operator construction.
For thec = 1 theory the vertex operators are given by

Ya(z) ~ : daX(2)/V2N - N
for z € S1, while for the WZW case they read
Pu(z) ~ tedA@ .Y @) .

Herea € Zoy, X is a free boson andt = (Yi) a collection of v — 1 free bosons, and
the colons stand for a suitable normal-ordering prescription; moreavgy, denote the
fundamental weights of the finite-dimensional Lie algefi@N) (for a # 0, together with
A :=0), and(-, -) is the inner product on the weight spacest@2N).

Both of these two types of quantum field theories posse@ss@ctors, each of which
has statistical dimension one, and in either case the fusion ring is the group ring of the
finite cyclic groupZy,y. In this situation it is quite natural to expect that the composition
of sectors can be understood by promoting thjs, group to a DHR gauge group; the
following considerations demonstrate that this is indeed the case. (Similar arguments will
work for any other theory whose fusion ring coincides with the group ring of a finite abelian
group.)

The sectors of the = 1 and of the WZW theories can be obtaihddy applying the
Fourier modes of the observables of these theories to suitable highest-weight vectors; in both
cases it is in fact sufficient to employ only the generators of the relevant current algebras
(which will be described in detail in section 6). It follows that the sectors of these theories are
isomorphic, respectively, to direct sumsf the irreducible highest-weight modulég"®’
of the 1(1) current algebra with chargemod 2V, and to the irreducible highest-weight
modulesL®” = LS5 of the WZW theory with certain specific highes(2N)-weights
A. More specifically, one finds that the sectdr§®® = LF*?Y) of the ¢ = 1 theory are
the direct sums

L~ LI 3

nez

while the sectorstwL)) of the level ones((2N) theory are moduleif” whose highest
weight A is either Ay = O (for the vacuum sector) or a fundamental weighg,,

(@e{l,2,...,2N—-1}) of sl(2N). Thus the sector decompositions of these theories read
F(BOS:2N) _ @ LgBos) — @ @Lflﬁ%]\, _ @L,ﬁ;‘“)) (3.4)
a€Zon a€Zyy nel meZ
and
; SL
HO = L @9
GEZQN

respectively.

From these decompositions we learn, in particular, that the spac®$2Y) and
HEL2N) naturally carry representations @hy. Since the grouf,y does not possess a
distinguished generator, theredgpriori some arbitrariness in the precise definition of these
representations, though. As it turns out, a convenient prescription for the representations

1 To be precise, this actually yields only dense subspaces of the sectors (the same remark applies to the sectors
of the other theories treated below). However, this will not play any role in our discussion, and accordingly we
simplify notation by using the same symbols for the sectors and for their dense subspaces.

i The individual summands are related to each other by the action of the additional observables of conformal
weight N. For the present statements we do not, however, need any information about the form of this action.
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U(Bos) = U(Bos;ZN) of ZZN on H(Bos;ZN) and U(SL) = U(SL;ZN) of ZZN on H(SL;ZN) is
provided by
B . SL .
U gos, =4 and USY| st =70 (3.6)
@ Aa)

Here for eachu € Z,y, 7, denotes th&,y-representation that acts as
7. (b) = /N forall b e Zay. (3.7)

4. CAR algebras from conformal field theories withZ,n fusion rules

The discussion of the previous section shows in particular that we are dealing with a situation
of the type described in equation (2.12) above, with

Bosy = Agos:2v) = (FBos:2n)) ™2 SLoy = AsLan) = (SsLan) 2. (4.2)

It is then natural to ask what the fixed point algebragoE §sos.2v) ® S(sL:2n) With
respect to the diagonal subgro@ﬂ,ag) C Zon X Zpy looks like. As usual,§ acts
irreducibly on a Hilbert spacg(, and under the action ¢”2"@29 we have a decomposition
H = @yez,, Ha- As it tumns out,§7¥ @9 is nothing but the CAR algebra (1.2) forv2
complex fermions, i.e.

(S Bos:2n) ® F(sL.aw)) P2 @9 = CAR 4.2)

where it is understood that the action @gos) ® S(SL))ZZN“"aQ’ is restricted to the vacuum
sectorH with respect to the diagondl,y subgroup. Note that (4.2) implies, in particular,
that

CAR™ = (Fgos.2n) ® Fist.aw)) 22 <L
= (FBos:2v) ™ ® (F(sL.2v)) ™ = Bosy ® SLoy. (4.3)

We will study this relationship in section 6 in terms of the Fourier modes of the
observables. Here we verify (4.2) in terms of the superselection sectors, i.e. show that
the vacuum sectoMy on which (Fses) ® F(s1))?2" @9 is acting coincides withH(CAR),

Recall from the introduction that we can construct the setféR of the fermion theory

by applying the Fourier modes of the fermions to the vacuum. Now the results on the
Hilbert spaces of the = 1 and WZW theories that we listed in the previous section imply
in particular that (a dense subspace of) the Hilbert space of the tensor product theory is

Bos;2 SL;2N) ~ B SL | _ (u(1) (SL)
H=nee e @ et = @ [(Dregy)ers]

a,belon a,beZoy nez
(4.4)
Furthermore, it is known [13] that the spaté“"®) = P, _, HAR) decomposes as
CAR) ~ (u(D) (SL)
HOR = (] [(@Lbim) ®LAW} (4.5)
bEZZN nez

into a direct sum of tensor products of the current algebra modules that appear in the former
decompositions.

T We continue to use the additive notation for integers modwo 2
i Here and in the following, equalities and isomorphisms between algebras are meant to apply both to global and
to local algebras.
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We would like to compare the results (4.4) and (4.5) from the perspective of the DHR
situation that we studied in section 2. To this end we employZtherepresentations (€°S)
andU®Y (3.6). OnH, these representations induce an actio.of x Z,y according to

Zon X Zon 3 (a, b) > UB® (a) e USY (b). (4.6)

We can then restrict this representation to the diagonal subgroup,pfx Z,y and
decomposét into its sectorsH,, with respect to this diagonal subgroup:

H= P H with M, = @[(@L;‘ﬁlﬁzm> ®L<A~°;;>]. 4.7

a€Zon beZon nez

Comparison of (4.4) with (4.5) now tells us that
~ SL
HOA = B LE® QLS =Ho. (4.8)

aclon
This finally confirms the validity of the isomorphism (4.2).

Let us also mention that when we consider the action of the full giup< Z,y instead
of its diagonal subgroup, then we must have an additi@daglaction in the fermionic Fock
spaceH (AR of the 2V complex fermions. To fit with the previous results, for each Z,y
such an additional gauge transformation must act on the fermion nigdasd ¢! as the
Bogoliubov transformation

G Bl @TNEL s g (4.9)

It is illustrative to formulate the results above also in terms of the (Virasoro-specialized)
characters

xv(q) = tryg"® (4.10)

of the various vector spacés that appeared in the decompositions. We first note that (4.9)
can be regarded as the restriction of an action of the gauge @folip for whicha € Zay

is just to be replaced by an arbitrary real parameter. The characters of the sectors of the
aIgebraCARZZN(diag) can therefore be calculated by first considering the decomposition of
HCAR) into sectorsHIVD] 1 e 7, with respect to a gauge group = U(1) and then the
restriction of G to its subgroupH = Z,y. In this situation we can again apply the relation
(2.7), which tells us that

Ha = P HESN (4.12)
nez

for eacha € Zy .
Now the characters for the spacky’ ! read (see e.g. [9])

2D (g) = Ou(@)(p(g) ™" (4.12)
while the characters of the sectdiBS of Fges) andHSP of F(s1, are given by

x50 (g) = (0(@) W, (@) (4.13)
and by

120 (@) = g7 (9(g) N Oulq) (4.14)
respectively. Here

o@)=]](1-4q" (4.15)

n=1
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is Euler's product function, while
O.(q) = Z q(WI§+m§+~~+m§N)/2 (4.16)

mi,my,...,moNE€ZL
mi+mo+--+moyy=a

and
Y (q) =Y qermVaN (4.17)
meZ
for a € Zyy. It is then easy to verify (cf e.g. formula (9.17) of [9]) that indeed
xa@) =Y x5 (@) = x B (q) - x5 () (4.18)
nez

for all a € Z,y, in agreement with our result that the sectors of #he fermion algebra
are precisely the tensor products of the irreducible moduleBdésy, and SL,y .

As another consistency check of the relation (4.2) we verify that the fields in the algebra
(8 Bos:. 27 ®F (sL.2n)) 724 @189 possess the right braiding properties. Since the form of the braid
relations does not depend on the precise choice of localization of the fields, we can consider
the ‘point-like localized’ unbounded field operators (3.1) and (3.2). These vertex operators
carry an abelian (‘anyonic’) representation of the braid group, and the phases appearing in
this representation can be determined from the conformal weights of the vertex operators.
More specifically, for thec = 1 theory we haveA(g,) = a?/4N, and accordingly [12]
0a(2) pp(w) = €7</2N o (w)) @, (z) (With the signe € {1} in the exponent depending on
whetherw is to the ‘left’ or to the ‘right’ ofz on the punctured circle), while for the WzZW
theory we haveA(¢,) = a(2N — a)/AN so thatg,(z)¢,(w) = £e 7€b/2N ¢, (1), (2).
Those fields in the tensor product theory which are invariant under the diadanaauge
group therefore all have conformal weight2 for somea € Zyy and satisfy fermionic or
bosonic braiding relations, as is required for (4.2) to hold.

5. Theories with gauge groupQ

It is known that the sectors of the= 1 circle theory with observable algeldas, combine,
respectively decompose, into the untwisted sectors ofcthel orbifold theory that has

N +7 sectors [7]. Moreover, inspection of the results of [7] also shows that these untwisted
orbifold sectors generate a fusion ring which is isomorphic to the representation ring of the
generalized quaternion group@ y (see appendix A for some basic information about these
non-abelian finite groups). Similarly, tf&_,y sectors give rise to the untwisted sectors of
the level twoso(2N) WZW theory, which can be seen to generat@ ;a fusion ring as well.
These observations lead us to expect that, as far as the untwisted sectors are concerned,
the superselection structure of the= 1 orbifold and level twoss(2N) theories can be
understood in terms of a DHR gauge gro@g . In this section we show that indeed one
obtains the observable algebras of these theories when one exterifis,tijauge groups

that appeared in the previous setting@g . Precisely speaking, we claim that we have an
action of Qy such that

(B Bos:2v)) 2¥ = Orby and (FsLan)?¥ = SOy (5.1)

whereOrby and SO,y stand for the observable algebras of the 1 orbifold theory with
N + 7 sectors and of the level tw(2N) WZW theory, respectively.

To prove this claim and to study its consequences, it is convenient to express the action
of the gauge groups in terms of automorphisms of the relevant field algebras. For each
a € Zyy the representationg® = Uy ®Bos:2V) and U@ = U©SH2M) that were introduced in
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(3.6) define automorphisms 4d ,, of the field algebrasy(;, for j = 1, 2, respectively.
We denote byx the generator of the abstract grofipy (x2V = 1), and define

‘i:(j) = AdU(j)(x) S Aut(S(j)) (52)

for j € {1, 2}. We wish to consider the situation that thgy gauge groups of both the= 1
and the WZW theory get extended to the generalized quaternion g@np$y including
another generator in such a way that the relations (A.1) ¢fy are satisfied. This means
that for j = 1, 2 we have besideg;, automorphism®;, = Adyu,, € Aut(g;)) which
obey

G =id £y 0 0y 0 &y = 0 0%, =&}, (5.3)
As a first consequence of our claim we observe that it gives rise to the identifications
(Bosy)?2 = Orby and (SLoy)%2 = SOy (5.4)

for a suitableZ, group of automorphisms. This can be seen as follows. By the identities
(5.3) we havek(;) o 0, (F(j)) = 6 o s(;)l(F(j)) for all F(;, € §¢). As a consequence,
A(j) € (F)™ implies that als®;,(A(;)) € (§(;))?*", and hence there exist restrictions
¥ of 6, to the Zoy-invariant subalgebraBosy = (F1))? and SLoy = (F2))%,
respectively. Now by definition the automorphisfyy, of §;, restricts to the identity
on (F)?, and therefore the relations (5.3) imply th%t?j) =id for j = 1,2. Thus
9 € Aut((F(;))?) are in factZ,-automorphisms. Put differently, the restrictiong,
exist because,y C Qy is a normal subgroup, and they dfg-automorphisms because
ON/Zan = Zo.

Now let us consider the automorphism

£ :=£p 0t € AUt(F) = AutTy ® 52) (5.5)

which represents the generatar, x) of the diagonal subgrouﬁ(z‘f,ag) C Zon X Zoy. The

action of the full grouZ,y x Z,y can be obtained by including anott&sy -automorphism,
say

E=ideky (5.6)
which realizes the element, x) of Z,y x Z,y. Now of course andé commute (orin more
mathematical terms, the diagonal subgr 29 Zon X Zoy is normal), so that there
exists a restrictiog of§ e Aut(g) to g7 @29 \We claim that when evaluated on the CAR

algebrg CAR = §”2v(@39 thjs restriction coincides with the Bogoliubov automorphism
that was defined in equation (4.9):

c=:o: b dNp ¢l e N (5.7)
Next we also defin® = 61,202 € Aut(F1) ® §2). Clearly, & and 6 generate the

diagonal subgrou@ﬁ?ia@ C Oy x Qn. Now denote by the restriction o € Aut(J) to

g%@29 \which again exists becauggi®® c 0% s normal. Since acts trivially on
N N

FZav(diag \ye learn that?? = id, i.e. ¥ generates &, group. We claim that thig,-action

on CAR = F%v(da9 ig realized as the exchange

9 bl (5.8)
of the fermion modes.

T Recall that in this isomorphism it is understood that the actio§’s @29 s restricted to the vacuum sector
with respect tazZa9.
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We will verify our claims in the following analysis of characters. Moreover, we will see
in section 6 that the¥-invariant linear combinations dBL,y-generators are precisely the
generators 080y, and that the}-invariant combinations dBosy-generators are precisely
the generators 0Orby. We start by noting thatQy : Z,y] = 2. Correspondingly it is
not difficult to construct the induction of the irreducible representation®f Z,y to its
extensionQy. Namely, for O< a < N the irreducibleZ,y-representationg, andmay_,
combine to a two-dimensional irreducible representatio®@f while g andxy split into
the direct sum of two one-dimensional representations. Denoting the group dual (i.e., the
set of irreducible characters) of the non-abelian graup by

Oy ={o,v,s5,clU{ala=1,2,...,N-1} (5.9)
this is written as

ind2" (z,) = indS" (moy—) = (% for O<a<N 10
indgz';, () = (2 @ m (o) indgz’:] (my) = 18 @ {2V,

Next we study what happens when we extend the diagonal sub@é&'ﬁ% C Zoy X Zon
to the diagonal subgrouQEf,j'ag) C Qn x Qn. Applying the general result (2.7) to the
situation described by (5.10), we learn that under the actio§%f429 c %29 the
fermionic Fock spacé((CAR) = 7, splits asHo = H, & Hy. Moreover,H, = H**® and
H, = H® are the even and odd subspaces with respect t@heutomorphismy of
(5.8), respectively. When we further extend the gauge group to thedfulk Q, group,
these spaces further decompose into sectorF%f Y = (Fpos)?¥ ® (FsL) 2. Now
the latter are of course tensor products of the sector@@t,s))QN and (S(SL))QN, which
we denote byH(E® = HE®2V) and HPY = HPW?Y), respectively. Implementing once
again (2.7) as well as the formula (2.10), we then conclude that this decomposition reads

(CAR) __ (Bos) (SL) N, (CAR) __ (Bos) (SL) N,
H = P HE® @HE" @ Cl HEW = P HE® @ HE" @ Cle

@, B0y a.peQy
(5.11)
where N, are the fusion coefficients ay, i.e. more explicitly,
N-1
HS_CAR) — HB%) g 1Y @ HE® @ HEY g @ 1S @ F(SL
a=1
HéBOS) ® HéSL) o) H((:BOS) ® H((:SL) for N even
HBOS) & HSL gy 1{(BOS) & 7/(SL) for N odd
s C c N_Sl (512)
chAR) _ H£B°S) ® H\(,SL) ® H\([Bos) Q 'HgSL) ® @ H&BOS) ® H((XSL)
a=1

HE) @ HEL @ HEB @ HEL for N even
HéBOS) ® HéSL) o) H((:BOS) ® H((:SL) for N Odd
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On the other hand, it is not difficult to check—some details are provided in appendix B—
that the characters df[fAR) and H“*® (i.e. the characters of the irreducible modules of
CAR”2) can be decomposed as

Z
X-[k— 2] — X(SOrb) SO)+X(Orb) (SO)+X(Orb) (SO) +X(Orb) (SO)+ZX(Orb) (SO)
jfll (5.13)
Z
X[_ 2l Xcgom) (SO) 4 X(Orb) (S0) 4. X(Orb) (SO) 4 X(Orb) (SO) +Z X(Orb) (SO)
a=1

into products of irreducible charactegg®® of the ¢ = 1 orbifold theoryOrby and of
irreducible charactergS® of the level twos6(2N) WZW theory. Now comparing
equations (5.12) and (5.13) (and recalling th§®™ = x©™ as well asy{S? = x59)
leads us to the conclusion that the sectors of the gauge-invariant algehras)?”
and (FsL))¢" indeed coincide with those ddrby and SO,y, respectively. This finally
reproduces the statement of our claim.

We further support our claim by the following consideration. Recall thatAut (SZZN)
satisfiesy? = id. This implies that; and 9 fulfil

N =id foBol =10 2 =id. (5.14)

Thus they provide a representation of the dihedral gy = Z,y % Z, by automorphisms
of F%v(@a9 \We can therefore consider the algelQ%ZN)DZN, which is the invariant part
of §%2v@39 with respect to the automorphjsrésande, or what is the same, the invariant
part of § with respect t&, &£ andd. Now &, & andd provide a representation of a subgroup
Ky C Qn x Qy that is obtained by adjoining the diagonal generaiary) to Zpy x Zoy.
Note that Py x Oy : Ky] = 2 and that the diagonal subgromé‘j\',ag) C Ky is normal.
Now Ky /Za*® = D,y, and this is the reason why the restrictionsand & of & and 6
provide a representation @,y in Aut (SZZN). We conclude that

(B Bos:2v) ® F(sL.an)) 2V C FKv = (SZZN)DZN (5.15)
or in other words,
Orby ® SOzy C CARP?Y, (5.16)

As it is a rather tedious calculation, we refrain from applying the whole machinery of
section 2 to the (gauge) subgrodfy = H C G = QyxQy. Rather, we restrict the
discussion to confirming the validity of th&-type inclusion (5.16), which is achieved by the
following argument. Under the action AR = X~ the vacuum sectoky = HCAR)

of F%@a9 gplits into sectors labelled b,y, and as the inclusion (5.16) is @h-type,

in this process each sector can split into at most §#6* 27 -sectors. Now the group.y

is precisely represented in A@AR) by the automorphisms (5.7) and (5.8), while for the
characters o£AR”?" we obtain

x1Pa] = 5 (Or) (SO) 4 X(Orb) X \580) X&DZN] = x(Orb) XVSO) + X(Orb) x5O
XS[DZN] — (Orb) (SO) + Xc(om) XC(SO) X([:DZN] — Xs(Orb) XS(SO> + XéOrb) X C(SO) (5.17)
x1P] = Xo(torb) (iso) for a«e{l,2,...,N-1}.
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(for more details, see appendix B). Again we conclude by comparison that (5.17) precisely
corresponds to the decomposition@AR?'-sectors into tensor products of the sectors of
Orby andSOy,y 1.

The above arguments in favour of our claims are certainly not rigorous, because we
employ the Virasoro-specialized characters which do not encode the complete structure of
the respective vector spaces. Nevertheless our claims are bound to be correct. For instance,
it would otherwise be a complete mystery why relations among characters of the type
derived above should be valid. Note, in particular, that our formulae hold simultaneously
for all values of the integeN. Moreover, the quite different arguments that we will present
in the following section provide further support to our claims.

6. Fourier modes of the observables

In this section we express the Fourier modes of the observables for the various models of
our interest through the Fourier modes of the free fermions. This will in particular allow
us to confirm various statements made earlier from a different point of view.

We first need to define a normal ordering of bilinears of fermion modes. We adopt the
convention that the symbel’ (r € Z + % i €{1,2,...,2N}), stands for either of the
Fourier moded. or ¢. of the fermions. Our normal-ordering prescription then reads

i alal for s>0
aall = . (6.1)
—ala, for s <O.

s

One now checks by direct computation that the combinations

Ji=%" b, (6.2)
reZ-&-%
with i, j € {1,2,...,2N} andm € Z satisfy the commutation relations

(I, 78 = 850l — ity + m8ji8i8 im0l (6.3)
and hence span a IeveIAoE({ZN) current algebra. More precisely, this Lie algebra is the
direct sum of a level ongl(2N) affine Kac—Moody algebra andigl) current algebra. The

generators of the level onﬁ(ZN) algebra consist of the linear combinations

H = Jif — ji+li+l for i=12...,2N-1 (6.4)
and of

EY = Jl for i #j. (6.5)

The zero modesn{ = 0) generate a subalgebra isomorphic to the simple Lie algebra
sl(2N). In particular, the modeﬂé span the Cartan subalgebrasbt2N), and fori < j

the Eéj constitute the raising operators«it2N), corresponding to the positivwé(2N)-roots
aij = o) + iy + - oo + -1 (Whereay, denote the simple roots &f(2N)),

T Another indirect confirmation of our claim follows from the following observation. In the spﬁ@R) there

must be simultaneous highest-weight vectorOoby and SO,y which correspond to the blocks that appear in

the decomposition (5.17). In [9] we determined the larger set of simultaneous highest-weight ve&tOrs, aind

the orbifold Virasoro algebra. Now inspecting the orbifold conformal weights of those vectors one learns that the
simultaneous highest-weight vectors@fby andSO,y are given by the zero grade & 0) vectors among those

in (8.8), (8.11), (8.12), (8.13) and also (10.12) and (10.13) of [9]. One can check thatheéransformation
properties of these vectors are indeed in agreement with the sector decomposition (5.17).
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while for j < i they are lowering operators, corresponding to the negatit&V)-roots
—aj;. Theti(1) current algebra is spanned by

I = m Z (6.6)
with relations

[Jins Ju]l = Smn0L. (6.7)

The *-operation acts on the currents (6.2) { ’) J’ . and their commutation

relations with the fermion modes read

[ rlnj’ bl;] 8 kbzln-H [Jrilj’ C]r(] —5"* £1+r (6.8)
so that, in particular,

bl = b, [ncl] == (6.9

In addition to the current algebra, the free fermions also bring along a Virasoro algebra,
with generators

LEAR = -1 %" Z )ibich (6.10)

reZ-&-; i=

Let us now interpret these observations from the perspective of sections 3 and 4. The
(unbounded) observables of ta&2N) level one WZW theory are well known [8]. They
consist precisely of the[(2N ) currents with modes (6.4) and (6.5), together with fields that
are obtainable from the currents by taking derivatives and forming normal-ordered products.
Among the latter there is, in particular, the associated Sugawara energy—momentum tensor,
the Fourier modes of which are given by the affine Sugawara formula

2N 2N
LV =>3" ( PIRTANAEE Y Gi,:H,;'H,g_n:> (6.11)
neZ Nij=1 i,j=1
i<j
(Gi; denotes the inverse of the Cartan matrixi@2N), and the normal-ordering prescription
is similar to the one in (6.1)), and hence they lie in a suitable completion of the universal
enveloping algebra of the current modes.
It follows that in order to be in agreement with the isomorphism (4.3), the observable
algebrasBosy (1) of thec = 1 theory are given by the commutantsSif,y in CAR(1)%2.
This certainly includes the bounded local functions of fiti#) currentJt as well as those
of the associated energy—momentum tensor whose modes are

LES =33 Jydmont. (6.12)
nez

(By carefully treating multiple normal orderings of the fermion modes, one can check that
L{Bos) 1 1 Sb — (CAR) ) We are now looking for further unbounded observables associated
to the Bosy theory In particular, we would like to find expressions that commute with the
5[(2N) modes and can be interpreted as the Fourier modes of fieltheit have integral
conformal weightA(¢) (with respect toLf)CAR)) and that can play the role of primary
conformal fields in the sense of [14]. Then the associated local bounded functions should

 Thus in particular the currents associatedsigos) ® § s, are represented in the form of a tensor product, i.e.
the 1(1) current acts ag ® 1 while thes?[(ZN) currents act ag¢ ® H,{l andle Ei,{
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be elements oBosy. Taking into account the isomorphism (4.3), we have to expect that
these modes aré,y-invariant infinite series of normal-ordered products of fermion modes;
moreover, we in fact need only to consider normal-ordered multilinears which are summed
over like
ne = Y apalalhan g, (6.13)
F1,72,.Fp—1
€Z+3

with p = 2A(¢) even. In addition, we can focus our attention to a small subset of these
unbounded observables, namely to those from which all others can be obtained by the
operations of taking derivatives and of forming normal-ordered products; for brevity, we
will refer to this subset as thieasic (unbounded) observables.

Now by a suitable relabelling of the summation indices on the right-hand side of (6.13)
we deduce from the anticommutativity of tle(respectivelyc) modes among themselves
that we can assume that equality= i; for k # [ appears only if one is dealing with
two different types of modes, i.e. only dif“ = b’A and a” = c” (or the other way round).
Employing the basic commutation relatlons (6 8) to compute the commutatej; of”
with J/* one then finds the following. First note that expressions which are neutral with
respect to the gauge groufpy (4.9) must involve products for which the numbersof
andc factors differ by a multiple of . Now when (6.13) contains an equal numbemwof
andc modes, then it commutes with th&2N) currents precisely if it is a normal-ordered
product of the Fourier modes of tli€l) currentJ (i.e. theJ,, (6.6)) and/or its derivatives.

A S|m|Iar analysis shows that for any oth&py-neutral combinationX to commute with
thes[(ZN) currents it is necessary and sufficient tixais obtainable by taking derivatives
and/or forming normal-ordered products of tiil) current modes and of the modes

. Z 172  32N-1;2N
By = brlbrz brzzv 1 bm —ri—ra—-—raN-1
F1,72,..y FaN—-1
eZJr% 6.14
C = Z L2 .. AN-12N (6.14)
m T rior2 raN-1 “M—ri—ra—-—ray-1°

F1,r2,...,F2N -1
EZ+%
One can check that the point-like localized fields which have (6.14) as their Fourier modes,
namely B(z) := 3., ., 2" VB, = bX(2)b?(2)---b*N(z) and C(z) = Y., ., 2" NC, =
c(2)c?(z) - - N (z), are primary conformal fields and have conformal weightB) =
A(C) = N, both with respect to the fermion energy—momentum tensor (6.10) and with
respect to the = 1 energy—momentum tensor (6.12) (which is compatible because they
commute with thes! [(2N) current algebra and hence with its energy—momentum tensor).
We conclude that the basic observables of ¢he 1 theory consist of thé(1) current
and the fieldsB and C, which are related by charge conjugation. This is in complete
agreement with the description of the observables that was given in [12]. The commutation
relations of the modes (6.14) are of the form

[Bms Bn] =0= [Cm7 Cn]

~ (6.15)
[Bms Cn] = p18m+11,01 - pZJm+n + 2P3( - aJ)m+n +-
where
1 2N—j
Dj = Pm.N:j = m—N+j+£-1 (6.16)
/ N TN = ) e;

t The summations ensure locality. Also note that owin§ifa b/] = 0 = [¢!, ¢/] no normal ordering is required
here.
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for j e N and

J = ~2NJ, (6.17)
and where the ellipsis stands for further terms involvjafpld normal-ordered products of
the currents (combined with terms involving derivatives, in a similar way asJfér—9.J)
and coefficients whose andN dependence takes the form gf, for j =4,5,...,2N - 1.

Note that forN = 1, the relations (6.15) amount to the statement that besid@(ﬂ)e
affine Lie algebra with generators (6.4) and (6.5), i.e.

. 12 1.2 - - 21 2.1
Iv=ER= Y bl ! Iy=El= )" bk
reZ-ﬁ-% rEZ-&-% (6 18)
0. 1 711 - .12 2 . .
IS =Hy= > (‘bley . —b% )
reZ+3

another (relatively commuting) level oB&(2) algebra is present, namely the one generated
by

KF=iB, =i Y b2 ! K, =iC, =i Y i :
reZJr% rEZJr%
(6.19)
KS:=~21,= Y (bleh . +:b2ch,0).
rEZ+%

(In a different context, this has also been observed in [15].)

Next, let us study the observables which stay fixed ur@gr i.e. those which are the
observables of the orbifold an®(2N) theories. According to the results of section 5, we
need to implement the additionZh transformation which operates on the fermion modes
as the exchangé (5.8). We first note tha# acts on thegl(2N) current modes (6.2) as

9(J)=—-J) (6.20)
so that the invariant combinations are

1= JiJ — gt (6.21)
formeZ andi, j € {1,2,...,2N} with i < j. It follows from the commutation relations

(6.3) that these modes span a level thg2N) affine Kac—Moody algebra. This is also
easily understood by realizing that the real and imaginary partsnd v of the fermion
modes, defined by

; 1, . . . 1, . .
b= —(ul +iv] o= —(ul —ivf 6.22
ﬁ( ) ﬁ( ) (©.22)
which satisfy? (u!) = ul and® (vl) = —v!, constitute the Fourier modes of a two sets of real

free fermions. Each of these realizes a real CAR algebra, and they mutually anticommute.
The combinations (6.21) are expressed through these fermion modes by

ij_l_j:.ij._.ji . -ij-_-ji-
Im - 2 ('urum—r' 'Mrum—r' + 'Urvm—r' 'vr vm—r')
reZ-&-%
_ N A SR UAY SN A
= E (ulug, o+ v, o). (6.23)
r€Z+%

It then follows immediately (compare e.g. [9]) that we are indeed dealing with a level two
50(2N) affine Lie algebra.

Now we use again the knowledge that the basic observables of a WZW theory are
given by the currents. From the inclusion (5.16) we therefore conclude that the observables
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Orby of the orbifold theory are contained in the commutant of the current algebra in the
algebraCARP?". As this is a proper inclusion, we cannot completely determine the orbifold
observables this way. Nevertheless we can make a few observations which can be compared
to the literature. First, th&(1) current modes (6.6), which in terms of the real fermions read

I = 1@N)Y2Y, o 32 vidd, ., transform asy(J,) = —J,, and hence definitely

do not belong toOrby. Also, among the linear combinations of the= 1 observables
(6.14), only B,, + C,, are ¥-invariant; comparison with the results of [7] shows that they
belong indeed to the basic unbounded observables of the orbifold theory, and hence the
corresponding bounded functions are element®©dfy. However, there are still further

basic observables. These include in particular the energy—momentum tensor, whose modes
can be written as

LO®) — [CAR) _ J (SO) (6.24)

m

(analogously ta.(B°s) = LCAR) _ 1 SLy 'whereL(S© is obtained from thés(2N) currents
(6.21) by the Sugawara formula. In terms of the fermion modes, this is a normal-ordered
product which contains the fermion modes only in the quadratic fefn{ and v/v;.
According to [7] there is one other primary conformal field which is a basic observable,
namely the combinationJ*: — 2. 7927 + 2:(3J)2..

In the special caseV = 1 the current algebrao(2N) degenerates tdi(1), with
modes i ? = Y, ;.1 (Cufud 0+ TvlvZ 1), or in terms of thesl(2) modes (6.18),

12 = g+ — J—. Similarly, the orbifold observables$, + C, becomeB, + C, =
(K} + K,) = X ey (urud 0 — tvlvi 1), which again generate &(1) current
algebra. In fact, in this case we are dealing with the tensor product oftwd circle
theories, each corresponding to the valig,s, = 4 of the integer that labels the circle
theories.

Finally, we note that by construction the real fermiafisandv’ are of Neveu—-Schwarz
type. In terms of the orbifold angb(2N) theories, this corresponds to the fact that we are
dealing with untwisted sectors only. In order to investigate the twisted sectors as well, one
would have to include also real fermions of Ramond type. Since for geietite twisted
sectors have non-integral statistical dimension, they are not covered by the conventional
DHR formalism, and hence are definitely beyond the scope of our present paper. On the
other hand, whew is a square number, then the statistical dimension of the twisted sectors
is integral, and correspondingly an interpretation in terms of a DHR gauge group might
again exist. At present we do not know of such an interpretation. But it is easy to see that
such a gauge group would have to be an extensiaf phby Z,. Moreover, it is likely that
this extension should be central, in such a way that the twisted sectors can be interpreted as
projective representations of the factor grogp. (For N = 1, this possibility is realized
rather trivially as the extension froM; = Z4 to Zg.)

Appendix A. The finite groups Qx and D;n

For any positive integeN, thegeneralized quaternion grou@ y is by definition the discrete
group that is generated freely by elemerntand y modulo the relationis

x?N =1 Xyx =y y2 =xV. (A1)

This is a finite group of ordefQy| = 4N. It has four one-dimensional representations
o, Ty, Ts, Te, @S Well asN — 1 two-dimensional representatioms, with representing

1 The first of these relations is not independent. We keep it to demonstrate the similarity with (A.3) below.
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matrices [16]
irm/N —1m
T (X) = ( ¢ 0 e—iJSn/N ) T (y) = < 2 ( 0) ) (A2)

The conjugacy classes and characterggf are displayed in table A1. From the character
table it follows in particular that the subring of the representation ring that is furnished by
the one-dimensional representations is the group ring,ot Z, when N is even, and the
group ring ofZ, whenN is odd.

Table Al. Character table foQ .

k) {34 {ya2+1]
Class {1} (ke{1,2....N-1) {x¥} 1=01...,N-1} I=01...,N-1}
Xo 1 1 1 1 1
Xv 1 1 1 -1 -1
xs 1 (=Dt (=pNV iV —iN
xe 1 (=DF A iV
Xm 2 2cogmmk/N) 2™ 0 0
Table A2. Character table foDoy.
5.5 ) {55 {55243
Class {1} (ke{l 2, ..., N-1) {#} 1=01...,N-1} I=01,..., N -1}
Xo 1 1 1 1 1
Xv 1 1 1 -1 -1
xs 1 (=DF -V -1 1
Xc 1 -p¥ 1 -1
Xm 2 2cogmmk/N) 2(-1™ 0 0

The cyclic groupZ,y generated by is a normal subgroup ofy; Qx is a non-split
extension of this normal subgroup . It is illustrative to compareQ y to the dihedral
group D,y which is asplit extension of its normal subgroup,y by Z, and hence a
semi-direct productDyy is by definition generated by elementsy subject to the relations

N =1 ivE=7 72 =1 (A.3)

We have|D,y| = 4N, and there are four one-dimensional representation®., s, 7,
and N — 1 two-dimensional representatioftg with matrices

- - grm/N 0 - - 01

The conjugacy classes and character®gf are given in table A2. It can be checked that
the representation rings of bothy and D,y are simply reducible.

Note that for evenV the groupsQy and D,y possess identical character tables, and
hence in particular identical representation rings. Nevertheless they are not isomorphic; e.g.
in Qy there is only a single element, namef; of order two, while inD,y there are many.
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Appendix B. Characters

In [9] we considered two specied andv’ of real free fermions. An action of the group
0O (2) (which can be interpreted as a DHR gauge group of the free fermion theory) was
defined by

vi(ul) = costyul, — sin(r)v! yi(v) = sin(t)ul. 4+ cost)v! (B.1)
wherer € R, and

n()) =u  n(v})=—0l. (B.2)
In terms of the complex fermiorls, andc. (see equation (6.22)) this reads
b =€l oy =ed g0 =c ) =b. (B.3)

It is obvious that by restrlctlng this action to the naturally embedded discrete subgroup
Doy C O(2) we just recover the automorphisms (5.7) and (58)= yx/n, ¥ = 1.
As in [9] we will use the labelling

0(2) =1{0,J}UN (B.4)

for the group dual of0(2). In [9] we computed the characters of the sector€aR%?;
they read

[0@)] _ ©o(q) (p(g)? Llo@l _ Oolq) (p(g)?

0 2(p(@)?N  2(p(g?)N / 202N 2(p(g?)N (B.5)
0,(q)

[0l — P for meN

with ¢ and®,, as defined in (4.15) and (4.16). Now upon induction frdzy to O(2) the
irreducible D,y -representations split into irreducibl@(2)-representations as

o0
indng)( ) = 7{0® @@ {0 indg;ﬁ)(néDzN)) —70@ g @”2("01\(/2))
n=1
0(2) 0(2) T (0(2)
dDZN ( s(DZN)) dDgN ( (DZN)) = Ton—1)N (B.6)
n=1
o0
indp® (. P20) = €D (40 ) vser B o n) for awef{l2...,N-1}.
n=1
Consequenﬂy’ we havqiDZN] = [0(2) —+ Zn 1 X g’O]\(/Z)], etc, and hence we find the
expressions
Oo(q) (@)™
[Davl () — o\q
xe 2N(q) = ¥o(q)
D=V 2692 T 2p(q2)?
©0(q) (@)™
[Day] — 0
X (q) = ¥o(q) -
Y PT20@)? 2@ ®.7)
1 _ On(g)
AP = 09y = S0 @)
Ou(q)

XD[(DZN](q) =g /4N1/, (@) ———— ae{l 2 ...,N-1}

(9@

with v, as defined in (4.17), for the characters of @&R"*" sectors. By comparison with
the characters of the sectors@fby andSO,y (given e.g. in [9]), it is then easily checked



3522 J Bockenhauer and J Fuchs

that indeed the identities (5.17) hold. Moreover, by restricting furthethye-action to the
Zy-action of % (corresponding to the elemeptof D,y), we obtain

N-1
Doy ((Z2)\ _ (D D D
IndZ;N(ﬂ+ 2 ) — 7.[0( ) @ ¢ ) @ @no(( 2N)
a=1
N1 (B.8)
. D: (Z3) D D D
IndZ;N(ﬂf 2 ) — 7.[\5 ) @ n.s( ) @ @no(t 2N)
a=1

wherer " = id and=”? denote the two irreducible representation&Zef The identities
(5.13) then immediately follow as a consequence of (5.17).

Acknowledgment

It is a pleasure to thank K-H Rehren for helpful comments on the manuscript.

References

[1] Haag R 1992 ocal Quantum PhysicéBerlin: Springer)

[2] Doplicher S, Haag R and Roberf E 1969 Fields, observables and gauge transformatiGoesnimun. Math.
Phys.131

[3] Doplicher S, Haag R and Roberd E 1969 Fields, observables and gauge transformati@@snimun. Math.
Phys.15 173

[4] Doplicher S and RobestJ E 1972 Fields, statistics and non-Abelian gauge gr@gmsmun. Math. Phy28
331

[5] Doplicher S and RobestJ E 1990 Why there is a field algebra with a compact gauge group describing the
superselection structure in particle physi@smmun. Math. Phy431 51

[6] Rehren K-H 1992 Field operators for anyons and plektGosnmun. Math. Phy<.45123

[7] Dijkgraaf R, Vafa C, Verlinde E and Verlinde H 1989 The operator algebra of orbifold madesmun.
Math. Phys.123485

[8] Knizhnik V G and Zamolodchike A B 1984 Current algebra and Wess—Zumino model in two dimensions
Nucl. PhysB 247 83

[9] Bockenhauer J and Fuchs J 1997 Higher level WZW sectors from free ferthidiath. Phys38 1227

[10] Fredenhagen K, Rehren K-H and Schroer B 1992 Superselection sectors with braid group statistics and

exchange algebras, II: covariance properRev. Math. Physl11 (special issue) 113

[11] Gabbiani F and Fhlich J 1993 Operator algebras and conformal field th&€osnmun. Math. Phy4.55569

[12] Buchholz D, Mack G and Todovd T 1988 The current algebra on the circle as a germ of local field theories
Nucl. Phys. (Proc. SupplB 5 20

[13] Hasegawa K 1989 Spin module versions of Weyl's reciprocity theorem for classical Kac—Moody Lie
algebras—an application to branching rule duakybl. RIMS 25 741

[14] Belavin A A, Polyake A M and Zamolodchikg A B 1984 Infinite conformal symmetry in two-dimensional
guantum field theor\Nucl. PhysB 241333

[15] Bernard D, Pasquier V and Serban D 1994 Spinons in conformal field tivuely Phys.B 428 612

[16] Curtis C W and Reiner | 196Representation Theory of Finite Groups and Associative Algefiasv York:
Interscience)



