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Abstract. It is demonstrated that several series of conformal field theories, while satisfying
braid group statistics, can still be described in the conventional setting of the DHR theory,
i.e. their superselection structure can be understood in terms of a compact DHR gauge group.
Besides theories with only simple sectors, these include (the untwisted part of)c = 1 orbifold
theories and level-twôso(2N) WZW theories. We also analyse the relation between these
models and theories of complex free fermions.

1. Introduction

In local relativistic quantum field theory, thefusion rules encode the basis independent
features of the composition of superselection sectors. When the theory enjoys permutation
group statistics, as is, for example, the case in four spacetime dimensions, then—under
standard assumptions which are motivated by physical principles such as causality (see e.g.
[1])—the fusion rules can be studied with the help of the DHR theory [2–4], implying that
the composition of sectors is governed by a compact group [5], theDHR gauge group.
More precisely, the fusion ring of the theory is isomorphic to the representation ring of the
gauge group. On the other hand, quantum field theories in spacetimes of low dimensionality
generically possess braid group statistics. As a consequence the role of the gauge group is
taken over by a much more complicated structure, which is commonly called a quantum
symmetry, and for which no generally accepted description is available yet.

The purpose of this paper is to demonstrate that several classes of low-dimensional
quantum field theories, while satisfying braid group statistics, can nevertheless be described
in the conventional DHR setting. The models in question are certain rational conformal
field theories. A necessary prerequisite for such a description to work is that the statistical
dimensionsda of all sectors are integers,

da ∈ Z for all a. (1.1)

In the particular case that all sectors are simple in the sense that they have statistical
dimension 1, the relevant braid group representation is one dimensional and the fusion ring
is nothing but the group ring of a finite abelian group. For these ‘abelian’ theories it is
rather straightforward to interpret the relevant abelian group as a DHR gauge group.

However, as we will show in this paper, a DHR interpretation is even possible for series
of rational quantum field theories which satisfy (1.1), but for which sectors with statistical

§ Heisenberg fellow.
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dimension larger than 1 appear. More specifically, we consider† series of models which
are labelled by a natural numberN ∈ N, such that there are four sectors of statistical
dimension 1 andN − 1 sectors of statistical dimension 2. In conformal field theory, two
different realizations of this series are known: first, the untwisted‡ sectors of ‘orbifold
theories’ of conformal central chargec = 1 (see e.g. [7]), and second, the untwisted sectors
of WZW theories [8] that are based on thêso(2N) current algebra at level 2, which have
c = 2N−1. Both of these realizations can be understood in terms of a reduction of other
series of conformal field theories which have 2N sectors, each of statistical dimension 1,
namely of thec = 1 theories that describe a free boson compactified on a circle of suitable
radius, and of thec = 2N−1 WZW theories based on̂sl(2N) at level 1, respectively.
Accordingly, we will start our discussion with an analysis of those ‘abelian’ theories.

As it turns out, all the theories just mentioned are closely related to theories of complex§
free fermions. In establishing these relations, an important role will be played by various
types of DHR gauge groups. We would like to mention that the description in terms of
fermions has several advantages with respect to a formulation via free bosons, which for
these theories exists as well. For instance, one only has to deal with polynomials in the
basic Fourier modes rather than with the exponentials that appear in the vertex operators
of the bosonic formulation. In particular, there is a rather simple characterization of the
observables, which will be described in section 6.

Concerning the free fermion theories, it is already worth while to be a bit more specific at
this introductory stage. We consider a Fock representation of the canonical anti-commutation
relations (CAR) which is characterized as follows. We fix (once and for all) a positive
integerN . On the Fock spaceH(CAR) ≡ H(CAR,2N) there operate the Fourier modesbir and
cir (i ∈ {1, 2, . . . ,2N} and r ∈ Z+ 1

2) of 2N complex free fermions. These modes satisfy
the relations {

bir , c
j
s

} = δi,j δr,−s1{
bir , b

j
s

} = 0= {cir , cjs } (1.2)

and there is a∗-operation (an involutive automorphism), which acts on the modes as(
bir
)∗ = ci−r . (1.3)

The Fock spaceH(CAR) itself is defined by the properties that it contains a unique (up to
a phase) vacuum vector|�〉 ∈ H(CAR) on which the modesbir and cir with positive index
r act as annihilation operators, i.e. for alli = 1, 2, . . . ,2N and all r ∈ N0 + 1

2 we have
bir |�〉 = cir |�〉 = 0, while the modes with negative indexr act as creation operators such
that their successive action on the vacuum provides a dense subspace.

† Another example has been studied in the appendix of [6].
‡ The term ‘untwisted’ refers to aZ2-gradation of the full fusion ring of these conformal field theories. The
N − 1 untwisted sectors form a sub-fusion ring of the full fusion ring, and it is this subring we consider here. In
addition there are four twisted sectors of statistical dimension

√
N . Clearly, with our methods we cannot study

these twisted sectors, except possibly whenN is a square (for the latter case see the speculations at the end of
the paper). Note, however, that in the DHR framework no recourse to concepts like modular invariance which do
not have an immediate physical interpretation is needed. Accordingly, while the twisted sectors must be included
when one wishes to construct a modular invariant two-dimensional conformal field theory, in our present study of
one-dimensional chiral conformal field theories we are free to restrict to the sub-fusion ring of our interest.
§ There is one other known series of rational fusion rings satisfying (1.1), namely those describing the untwisted
sectors of the level twôso(2N+1) WZW theory. Using the results of [9], these could be analysed along similar
lines, but involving an odd number of real free fermions. However, some of the arguments turn out to become
more involved, and we refrain from delving into these complications here.
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Given the fermion Fourier modesbir andcir , we can define local and global CAR algebras
as follows. Forf ∈ L2

(
S1;C2N

)
we set

b(f ) :=
2N∑
i=1

∑
r∈Z+ 1

2

f i−rb
i
r and c(f ) :=

2N∑
i=1

∑
r∈Z+ 1

2

f i−rc
i
r (1.4)

wheref i(z) = ∑
r∈Z+1/2 f

i
−rz

r is the Fourier decomposition of theith component of the
function f (the circle S1 is considered as the unit circle in the complex plane, so that
z = eiφ ∈ S1 with −π < φ 6 π ). For open intervalsI ⊂ S1 we define the local CAR
algebrasCAR(I ) to be the von Neumann algebras generated by elementsb(f ) and c(g)
with f, g having support inI ,

CAR(I ) := {b(f ), c(g)∣∣f, g ∈ L2
(
I ;C2N

)}′′
. (1.5)

(The prime stands for the commutant in the algebra of bounded operators onH(CAR). Note
that the bicommutant of a set of operators then actually coincides with the von Neumann
algebra they generate.) By construction, for any pair of open intervalsI1, I2 with I1 ⊂ I2

we have an inclusionCAR(I1) ⊂ CAR(I2), which is inherited from the natural embeddings
of theL2 spaces. The global CAR algebra is defined as the norm closure

CAR :=
⋃
I∈J ∗

CAR(I ) (1.6)

of the union of local algebras, whereJ ∗ denotes the set of those open intervalsI ⊂ S1

whose closure does not contain the point (say)z = −1.
This paper is organized as follows. In section 2 we summarize some features of the

DHR theory and study the interplay between the sector decompositions that arise from
embeddings of gauge groups. In section 3 we present the sector decompositions of the
c = 1 ‘circle’ conformal field theories with 2N sectors and of the level-onêsl(2N) WZW
theories and interpret them in terms of DHR gauge groupsZ2N . The relation between
these theories and the CAR algebras defined by (1.2) is demonstrated in section 4. When
theZ2N gauge symmetry of these theories is extended by a suitable further automorphism,
one arrives at a description of thec = 1 orbifold and the level-twôso(2N) WZW theories
with N+7 sectors; these theories and their connection with the CAR algebra is analysed in
section 5. Finally, in section 6 we present the Fourier modes of the observables, expressed
in terms of the Fourier modes of the free fermions.

2. DHR sectors and embeddings of gauge groups

Let us briefly recall some facts about the DHR theory [2–4] of superselection sectors. We
are dealing with chiral conformal field theories, so that the relevant spacetime isS1, the unit
circle. To apply the DHR theory to this situation, one associates to each intervalI ⊂ S1 a
local field algebraF(I ); this is a von Neumann algebra which acts on some Hilbert space
H in such a way thatI1 ⊂ I2 implies F(I1) ⊂ F(I2). The global (or quasilocal) field
algebra, which is defined as the norm closure

F =
⋃
I∈J ∗

F(I ) (2.1)

of the union of all local field algebras, acts irreducibly onH. Here as in (1.6)J ∗ denotes
the set of open intervals inS1 whose closure does not contain−1 ∈ S1. The Hilbert
spaceH carries a strongly continuous representationR of the spacetime symmetry group
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SU(1, 1) such that the generatorL0 of rotations is positive and the eigenvalue zero belongs
to a unique (up to a phase) vacuum vector|�〉 ∈ H (see e.g. [10, 11]). The field algebras
transform covariantly with respect toR. Furthermore,H also carries a strongly continuous
representationU of a compact groupG, called the DHRgauge group, which commutes with
R and leaves the vacuum vector invariant, and which transforms each local field algebra
into itself. Local observable algebrasare the fixed point algebras of the field algebras with
respect to the gauge groupG,

A(I ) = F(I )G := F(I ) ∩ U(G)′ (2.2)

and the global observable algebra is

A =
⋃
I∈J ∗

A(I ) (2.3)

so thatA = F
G. Note that while all local algebras are von Neumann algebras, the global

algebras are onlyC∗-algebras. Fields are relatively local to the observables, and this implies
in particular locality of the observables.

Under these (and a few further standard) assumptions, the DHR theory tells us that the
Hilbert spaceH decomposes as

H =
⊕
α∈Ĝ
Hα ⊗ Cdα (2.4)

with respect to the action ofA. HereHα are pairwise inequivalent irreducibleA-modules,
called thesuperselection sectors, Ĝ denotes the group dual ofG (i.e. the set of irreducible
characters ofG, which constitutes a basis of the representation ring ofG), anddα is the
dimension of the irreducibleG-representationπα with characterα ∈ Ĝ. The gauge group
G acts on the multiplicity spaceCdα by the representationπα, i.e.

U(g) =
⊕
α∈Ĝ

1Hα ⊗πα(g) for all g ∈ G. (2.5)

Next we investigate what happens when we are given two different DHR gauge groups
G andH which act on one and the same field algebraF. Then there are two decompositions⊕

α∈Ĝ
Hα ⊗ Cdα = H =

⊕
a∈Ĥ
Ha ⊗ Cda (2.6)

of the Hilbert spaceH with respect to the fixed point algebrasF
G and F

H , respectively.
Now consider the situation thatH ⊂ G and that the action ofH is defined by the restriction
of U from G to H . It is not hard to see that the decompositions (2.6) are then related as

Ha =
⊕
α∈Ĝ
Hα ⊗ Cnaα (2.7)

where the branching coefficientsnaα are defined through the restriction

resGH (πα) =
⊕
a∈Ĥ

naαπa (2.8)

of irreducibleG-representationsπα to H -representations, or equivalently, through

indGH (πa) =
⊕
α∈Ĝ

naαπα (2.9)

by Frobenius reciprocity. In other words, the superselection sectorsHa, labelled bya ∈ Ĥ ,
are related to the sectorsHα, α ∈ Ĝ, according to the induction fromH to G.
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We are particularly interested in the specific case whereH is embedded diagonally into
G = H × H . ThenĜ = Ĥ × Ĥ , so thatα ∈ Ĝ can be considered as a pair(a1,a2) with
a1, a2 ∈ Ĥ . It follows that

naα ≡ na(a1,a2)
= N a

a1a2
(2.10)

whereN c
ab are thefusion coefficientsof H , defined by the tensor product decomposition

πa ⊗ πb ∼=
⊕
c∈Ĥ

N c
ab πc (2.11)

of irreducibleH -representations. This observation applies in particular to the situation where
the field algebraF has the structure of a tensor productF = F(1) ⊗ F(2) of field algebras
which possess isomorphic DHR gauge groups, i.e. for which the associated observable
algebras are

A(1) = (F(1))H(1) A(2) = (F(2))H(2) with H(1) ∼= H(2) ∼=: H. (2.12)

In this case the field algebraF acts in a canonical manner on the tensor productH =
H(1) ⊗ H(2) of Hilbert spacesH(1) andH(2), which under the action of the observable
algebrasA(1) andA(2) decompose into sectors as

H(1) =
⊕
a∈Ĥ
H(1)a ⊗ Cda and H(2) =

⊕
a∈Ĥ
H(2)a ⊗ Cda (2.13)

respectively. It follows from the result above that under the action of the diagonal subgroup
of H(1) ×H(2), H decomposes as

H =
⊕
a∈Ĥ
Ha ⊗ Cda with Ha =

⊕
b,c∈Ĥ

H(1)b ⊗H(2)c ⊗ CN
a

bc . (2.14)

Below we will encounter the specific case of cyclic gauge groupH ∼= Z2N ≡ Z/2NZ.
Then alsoĤ ∼= Z2N ; thus the labelsa ∈ Ĥ can (and will) be considered as integers defined
modulo 2N , i.e. Ĥ = {0, 1, . . . ,2N − 1}, and the fusion coefficients readN c

ab = δa+b,c for
a, b, c ∈ Ĥ . Therefore the decomposition (2.14) readsH =⊕a∈Z2N

Ha with

Ha =
⊕
b∈Z2N

H(1)b ⊗H(2)a−b (2.15)

in particular, the vacuum sectorH0 splits as

H0 =
⊕
a∈Z2N

H(1)a ⊗H(2)2N−a. (2.16)

3. c = 1 and WZW theories with Z2N fusion rules

For intervalsI ⊂ S1 we denote byBosN(I) the local observable algebras of thec = 1
conformal field theory with 2N sectors that corresponds to a (chiral) free boson compactified
on a circle of appropriate radius. According to the results of [12], the algebrasBosN(I)
are the von Neumann algebras that are generated by local bounded functions of aû(1)
current and of a conjugate pair of Virasoro-primary fields of conformal dimension1 = N .
Similarly, we denote bySL2N(I) the local observable algebras of the WZW theory based on
the ŝl(2N) current algebra at level 1. The corresponding globalC∗-algebras will be denoted
by BosN and SL2N , respectively, and the associated field algebras byF(Bos) ≡ F(Bos;2N)
andF(SL) ≡ F(SL;2N), respectively. Unfortunately, while explicit expressions for localized
fields are available in thec = 1 case [12], to the best of our knowledge they are not known
for the WZW theories. However, both for thec = 1 and the WZW theories, ‘point-like
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localized’ unbounded field operators can be obtained by the vertex operator construction.
For thec = 1 theory the vertex operators are given by

ϕa(z) ∼ :eiaX(z)/
√

2N : (3.1)

for z ∈ S1, while for the WZW case they read

φa(z) ∼ :ei(3(a),Y (z)):. (3.2)

Here a ∈ Z2N , X is a free boson andY ≡ (Y i) a collection of 2N − 1 free bosons, and
the colons stand for a suitable normal-ordering prescription; moreover,3(a) denote the
fundamental weights of the finite-dimensional Lie algebrasl(2N) (for a 6= 0, together with
3(0) := 0), and(· , ·) is the inner product on the weight space ofsl(2N).

Both of these two types of quantum field theories possess 2N sectors, each of which
has statistical dimension one, and in either case the fusion ring is the group ring of the
finite cyclic groupZ2N . In this situation it is quite natural to expect that the composition
of sectors can be understood by promoting thisZ2N group to a DHR gauge group; the
following considerations demonstrate that this is indeed the case. (Similar arguments will
work for any other theory whose fusion ring coincides with the group ring of a finite abelian
group.)

The sectors of thec = 1 and of the WZW theories can be obtained† by applying the
Fourier modes of the observables of these theories to suitable highest-weight vectors; in both
cases it is in fact sufficient to employ only the generators of the relevant current algebras
(which will be described in detail in section 6). It follows that the sectors of these theories are
isomorphic, respectively, to direct sums‡ of the irreducible highest-weight modulesL(u(1))b

of the û(1) current algebra with chargebmod 2N , and to the irreducible highest-weight
modulesL(SL)

3 ≡ L(SL;2N)
3 of the WZW theory with certain specific highestsl(2N)-weights

3. More specifically, one finds that the sectorsL(Bos)
b ≡ L(Bos;2N)

b of the c = 1 theory are
the direct sums

L
(Bos)
b =

⊕
n∈Z

L
(u(1))
b+2nN (3.3)

while the sectorsL(SL)
3(a)

of the level onesl(2N) theory are modulesL(SL)
3 whose highest

weight 3 is either 3(0) = 0 (for the vacuum sector) or a fundamental weight3(a)

(a ∈ {1, 2, . . . ,2N−1}) of sl(2N). Thus the sector decompositions of these theories read

H(Bos;2N) =
⊕
a∈Z2N

L(Bos)
a ≡

⊕
a∈Z2N

⊕
n∈Z

L
(u(1))
a+2nN =

⊕
m∈Z

L(u(1))m (3.4)

and

H(SL;2N) =
⊕
a∈Z2N

L
(SL)
3(a)

(3.5)

respectively.
From these decompositions we learn, in particular, that the spacesH(Bos;2N) and

H(SL;2N) naturally carry representations ofZ2N . Since the groupZ2N does not possess a
distinguished generator, there isa priori some arbitrariness in the precise definition of these
representations, though. As it turns out, a convenient prescription for the representations

† To be precise, this actually yields only dense subspaces of the sectors (the same remark applies to the sectors
of the other theories treated below). However, this will not play any role in our discussion, and accordingly we
simplify notation by using the same symbols for the sectors and for their dense subspaces.
‡ The individual summands are related to each other by the action of the additional observables of conformal
weightN . For the present statements we do not, however, need any information about the form of this action.
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U(Bos) ≡ U(Bos;2N) of Z2N on H(Bos;2N) and U(SL) ≡ U(SL;2N) of Z2N on H(SL;2N) is
provided by†

U(Bos)
∣∣
L
(Bos)
a

:= πa and U(SL)
∣∣
L
(SL)
3(a)

:= π−a. (3.6)

Here for eacha ∈ Z2N , πa denotes theZ2N -representation that acts as

πa(b) = eiπab/N for all b ∈ Z2N. (3.7)

4. CAR algebras from conformal field theories withZ2N fusion rules

The discussion of the previous section shows in particular that we are dealing with a situation
of the type described in equation (2.12) above, with‡

BosN ≡ A(Bos;2N) = (F(Bos;2N))Z2N SL2N ≡ A(SL;2N) = (F(SL;2N))Z2N . (4.1)

It is then natural to ask what the fixed point algebra ofF ≡ F(Bos;2N) ⊗ F(SL;2N) with
respect to the diagonal subgroupZ(diag)

2N ⊂ Z2N × Z2N looks like. As usual,F acts
irreducibly on a Hilbert spaceH, and under the action ofFZ2N (diag) we have a decomposition
H = ⊕a∈Z2N

Ha. As it turns out,FZ2N (diag) is nothing but the CAR algebra (1.2) for 2N
complex fermions, i.e.

(F(Bos;2N) ⊗ F(SL;2N))Z2N (diag) ∼= CAR (4.2)

where it is understood that the action of(F(Bos) ⊗ F(SL))
Z2N (diag) is restricted to the vacuum

sectorH0 with respect to the diagonalZ2N subgroup. Note that (4.2) implies, in particular,
that

CARZ2N ∼= (F(Bos;2N) ⊗ F(SL;2N))Z2N×Z2N

= (F(Bos;2N))Z2N ⊗ (F(SL;2N))Z2N = BosN ⊗ SL2N. (4.3)

We will study this relationship in section 6 in terms of the Fourier modes of the
observables. Here we verify (4.2) in terms of the superselection sectors, i.e. show that
the vacuum sectorH0 on which (F(Bos) ⊗ F(SL))

Z2N (diag) is acting coincides withH(CAR).
Recall from the introduction that we can construct the sectorsH(CAR)

a of the fermion theory
by applying the Fourier modes of the fermions to the vacuum. Now the results on the
Hilbert spaces of thec = 1 and WZW theories that we listed in the previous section imply
in particular that (a dense subspace of) the Hilbert space of the tensor product theory is

H = H(Bos;2N) ⊗H(SL;2N) ∼=
⊕

a,b∈Z2N

[
L(Bos)
a ⊗ L(SL)

3(b)

]
=

⊕
a,b∈Z2N

[(⊕
n∈Z

L
(u(1))
a+2nN

)
⊗ L(SL)

3(b)

]
.

(4.4)

Furthermore, it is known [13] that the spaceH(CAR) =⊕a∈Z2N
H(CAR)
a decomposes as

H(CAR) ∼=
⊕
b∈Z2N

[(⊕
n∈Z

L
(u(1))
b+2nN

)
⊗ L(SL)

3(b)

]
(4.5)

into a direct sum of tensor products of the current algebra modules that appear in the former
decompositions.

† We continue to use the additive notation for integers modulo 2N .
‡ Here and in the following, equalities and isomorphisms between algebras are meant to apply both to global and
to local algebras.
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We would like to compare the results (4.4) and (4.5) from the perspective of the DHR
situation that we studied in section 2. To this end we employ theZ2N -representationsU(Bos)

andU(SL) (3.6). OnH, these representations induce an action ofZ2N × Z2N according to

Z2N × Z2N 3 (a, b) 7→ U(Bos)(a)⊗U(SL)(b). (4.6)

We can then restrict this representation to the diagonal subgroup ofZ2N × Z2N and
decomposeH into its sectorsHa with respect to this diagonal subgroup:

H =
⊕
a∈Z2N

Ha with Ha :=
⊕
b∈Z2N

[(⊕
n∈Z

L
(u(1))
a+b+2nN

)
⊗ L(SL)

3(b)

]
. (4.7)

Comparison of (4.4) with (4.5) now tells us that

H(CAR) ∼=
⊕
a∈Z2N

L(Bos)
a ⊗ L(SL)

3(a)
= H0. (4.8)

This finally confirms the validity of the isomorphism (4.2).
Let us also mention that when we consider the action of the full groupZ2N×Z2N instead

of its diagonal subgroup, then we must have an additionalZ2N action in the fermionic Fock
spaceH(CAR) of the 2N complex fermions. To fit with the previous results, for eacha ∈ Z2N

such an additional gauge transformation must act on the fermion modesbir and cir as the
Bogoliubov transformation

ζa: bir 7→ eiπa/Nbir cir 7→ e−iπa/Ncir . (4.9)

It is illustrative to formulate the results above also in terms of the (Virasoro-specialized)
characters

χV (q) := trV q
L0 (4.10)

of the various vector spacesV that appeared in the decompositions. We first note that (4.9)
can be regarded as the restriction of an action of the gauge groupU(1), for which a ∈ Z2N

is just to be replaced by an arbitrary real parameter. The characters of the sectors of the
algebraCARZ2N (diag) can therefore be calculated by first considering the decomposition of
H(CAR) into sectorsH[U(1)]

m , m ∈ Z, with respect to a gauge groupG = U(1) and then the
restriction ofG to its subgroupH = Z2N . In this situation we can again apply the relation
(2.7), which tells us that

Ha =
⊕
n∈Z
H[U(1)]
a+2nN (4.11)

for eacha ∈ Z2N .
Now the characters for the spacesH[U(1)]

m read (see e.g. [9])

χ [U(1)]
m (q) = 2m(q)(ϕ(q))

−2N (4.12)

while the characters of the sectorsH(Bos)
a of F(Bos) andH(SL)

a of F(SL) are given by

χ(Bos;2N)
a (q) = (ϕ(q))−1ψa(q) (4.13)

and by

χ(SL;2N)
a (q) = q−a2/4N(ϕ(q))1−2N2a(q) (4.14)

respectively. Here

ϕ(q) :=
∞∏
n=1

(
1− qn) (4.15)



CFT fusion rules, DHR gauge groups and CAR algebras 3511

is Euler’s product function, while

2a(q) :=
∑

m1,m2,...,m2N∈Z
m1+m2+···+m2N=a

q(m
2
1+m2

2+···+m2
2N )/2 (4.16)

and

ψa(q) :=
∑
m∈Z

q(a+2mN)2/4N (4.17)

for a ∈ Z2N . It is then easy to verify (cf e.g. formula (9.17) of [9]) that indeed

χa(q) =
∑
n∈Z

χ
[U(1)]
a+2nN(q) = χ(Bos;2N)

a (q) · χ(SL;2N)
a (q) (4.18)

for all a ∈ Z2N , in agreement with our result that the sectors of theZ2N fermion algebra
are precisely the tensor products of the irreducible modules forBosN andSL2N .

As another consistency check of the relation (4.2) we verify that the fields in the algebra
(F(Bos;2N)⊗F(SL;2N))Z2N (diag) possess the right braiding properties. Since the form of the braid
relations does not depend on the precise choice of localization of the fields, we can consider
the ‘point-like localized’ unbounded field operators (3.1) and (3.2). These vertex operators
carry an abelian (‘anyonic’) representation of the braid group, and the phases appearing in
this representation can be determined from the conformal weights of the vertex operators.
More specifically, for thec = 1 theory we have1(ϕa) = a2/4N , and accordingly [12]
ϕa(z) ϕb(w) = eiπεab/2Nϕb(w) ϕa(z) (with the signε ∈ {±1} in the exponent depending on
whetherw is to the ‘left’ or to the ‘right’ ofz on the punctured circle), while for the WZW
theory we have1(φa) = a(2N − a)/4N so thatφa(z)φb(w) = ±e−iπεab/2Nφb(w)φa(z).
Those fields in the tensor product theory which are invariant under the diagonalZ2N gauge
group therefore all have conformal weighta/2 for somea ∈ Z2N and satisfy fermionic or
bosonic braiding relations, as is required for (4.2) to hold.

5. Theories with gauge groupQN

It is known that the sectors of thec = 1 circle theory with observable algebraBosN combine,
respectively decompose, into the untwisted sectors of thec = 1 orbifold theory that has
N+7 sectors [7]. Moreover, inspection of the results of [7] also shows that these untwisted
orbifold sectors generate a fusion ring which is isomorphic to the representation ring of the
generalized quaternion groupQN (see appendix A for some basic information about these
non-abelian finite groups). Similarly, theSL2N sectors give rise to the untwisted sectors of
the level twoŝo(2N) WZW theory, which can be seen to generate aQN fusion ring as well.
These observations lead us to expect that, as far as the untwisted sectors are concerned,
the superselection structure of thec = 1 orbifold and level twoŝo(2N) theories can be
understood in terms of a DHR gauge groupQN . In this section we show that indeed one
obtains the observable algebras of these theories when one extends theZ2N gauge groups
that appeared in the previous setting toQN . Precisely speaking, we claim that we have an
action ofQN such that

(F(Bos;2N))QN = OrbN and (F(SL;2N))QN = SO2N (5.1)

whereOrbN andSO2N stand for the observable algebras of thec = 1 orbifold theory with
N + 7 sectors and of the level twôso(2N) WZW theory, respectively.

To prove this claim and to study its consequences, it is convenient to express the action
of the gauge groups in terms of automorphisms of the relevant field algebras. For each
a ∈ Z2N the representationsU(1) ≡ U(Bos;2N) andU(2) ≡ U(SL;2N) that were introduced in



3512 J Böckenhauer and J Fuchs

(3.6) define automorphisms AdU(j)(a) of the field algebrasF(j) for j = 1, 2, respectively.
We denote byx the generator of the abstract groupZ2N (x2N = 1), and define

ξ(j) := AdU(j)(x) ∈ Aut(F(j)) (5.2)

for j ∈ {1, 2}. We wish to consider the situation that theZ2N gauge groups of both thec = 1
and the WZW theory get extended to the generalized quaternion groupsQN , by including
another generatory in such a way that the relations (A.1) ofQN are satisfied. This means
that for j = 1, 2 we have besidesξ(j) automorphismsθ(j) = AdU(j)(y) ∈ Aut(F(j)) which
obey

ξ2N
(j) = id ξ(j) ◦ θ(j) ◦ ξ(j) = θ(j) θ2

(j) = ξN(j). (5.3)

As a first consequence of our claim we observe that it gives rise to the identifications

(BosN)Z2 = OrbN and (SL2N)
Z2 = SO2N (5.4)

for a suitableZ2 group of automorphisms. This can be seen as follows. By the identities
(5.3) we haveξ(j) ◦ θ(j)(F(j)) = θ(j) ◦ ξ−1

(j) (F(j)) for all F(j) ∈ F(j). As a consequence,
A(j) ∈ (F(j))Z2N implies that alsoθ(j)(A(j)) ∈ (F(j))Z2N , and hence there exist restrictions
ϑ(j) of θ(j) to the Z2N -invariant subalgebrasBosN = (F(1))

Z2N and SL2N = (F(2))
Z2N ,

respectively. Now by definition the automorphismξ(j) of F(j) restricts to the identity
on (F(j))Z2N , and therefore the relations (5.3) imply thatϑ2

(j) = id for j = 1, 2. Thus
ϑ(j) ∈ Aut

(
(F(j))

Z2N
)

are in factZ2-automorphisms. Put differently, the restrictionsϑ(j)
exist becauseZ2N ⊂ QN is a normal subgroup, and they areZ2-automorphisms because
QN/Z2N

∼= Z2.
Now let us consider the automorphism

ξ := ξ(1) ⊗ ξ(2) ∈ Aut(F) ≡ Aut(F(1) ⊗ F(2)) (5.5)

which represents the generator(x, x) of the diagonal subgroupZ(diag)
2N ⊂ Z2N × Z2N . The

action of the full groupZ2N×Z2N can be obtained by including anotherZ2N -automorphism,
say

ξ̃ := id ⊗ ξ(2) (5.6)

which realizes the element(1, x) of Z2N×Z2N . Now of courseξ andξ̃ commute (or in more
mathematical terms, the diagonal subgroupZ(diag)

2N ⊂ Z2N × Z2N is normal), so that there
exists a restrictionζ of ξ̃ ∈ Aut(F) to F

Z2N (diag). We claim that when evaluated on the CAR
algebra† CAR ∼= F

Z2N (diag), this restriction coincides with the Bogoliubov automorphismζ1

that was defined in equation (4.9):

ζ = ζ1: bir 7→ eiπ/Nbir cir 7→ e−iπ/Ncir . (5.7)

Next we also defineθ := θ(1) ⊗ θ(2) ∈ Aut(F(1) ⊗ F(2)). Clearly, ξ and θ generate the
diagonal subgroupQ(diag)

N ⊂ QN ×QN . Now denote byϑ the restriction ofθ ∈ Aut(F) to

F
Z2N (diag), which again exists becauseZ(diag)

2N ⊂ Q(diag)
N is normal. Sinceξ acts trivially on

F
Z2N (diag), we learn thatϑ2 = id, i.e. ϑ generates aZ2 group. We claim that thisZ2-action

on CAR ∼= F
Z2N (diag) is realized as the exchange

ϑ : bir ↔ cir (5.8)

of the fermion modes.

† Recall that in this isomorphism it is understood that the action ofFZ2N (diag) is restricted to the vacuum sector
with respect toZ(diag)

2N .
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We will verify our claims in the following analysis of characters. Moreover, we will see
in section 6 that theϑ-invariant linear combinations ofSL2N -generators are precisely the
generators ofSO2N , and that theϑ-invariant combinations ofBosN -generators are precisely
the generators ofOrbN . We start by noting that [QN : Z2N ] = 2. Correspondingly it is
not difficult to construct the induction of the irreducible representationsπa of Z2N to its
extensionQN . Namely, for 0< a < N the irreducibleZ2N -representationsπa andπ2N−a
combine to a two-dimensional irreducible representation ofQN , while π0 andπN split into
the direct sum of two one-dimensional representations. Denoting the group dual (i.e., the
set of irreducible characters) of the non-abelian groupQN by

Q̂N = {◦, v, s, c} ∪ {a|a = 1, 2, . . . , N−1} (5.9)

this is written as

indQN

Z2N
(πa) = indQN

Z2N
(π2N−a) = π(QN)

a for 0< a < N

indQN

Z2N
(π0) = π(QN)◦ ⊕ π(QN)

v indQN

Z2N
(πN) = π(QN)

s ⊕ π(QN)
c .

(5.10)

Next we study what happens when we extend the diagonal subgroupZ(diag)
2N ⊂ Z2N×Z2N

to the diagonal subgroupQ(diag)
N ⊂ QN × QN . Applying the general result (2.7) to the

situation described by (5.10), we learn that under the action ofF
QN(diag) ⊂ F

Z2N (diag) the
fermionic Fock spaceH(CAR) ≡ H0 splits asH0 = H◦ ⊕Hv. Moreover,H◦ = H(CAR)

+ and
Hv = H(CAR)

− are the even and odd subspaces with respect to theZ2-automorphismϑ of
(5.8), respectively. When we further extend the gauge group to the fullQN ×QN group,
these spaces further decompose into sectors ofF

QN×QN = (F(Bos))
QN ⊗ (F(SL))

QN . Now
the latter are of course tensor products of the sectors of(F(Bos))

QN and (F(SL))
QN , which

we denote byH(Bos)
α ≡ H(Bos;2N)

α andH(SL)
β ≡ H(SL;2N)

β , respectively. Implementing once
again (2.7) as well as the formula (2.10), we then conclude that this decomposition reads

H(CAR)
+ =

⊕
α,β∈Q̂N

H(Bos)
α ⊗H(SL)

β ⊗ CN ◦
αβ H(CAR)

− =
⊕

α,β∈Q̂N

H(Bos)
α ⊗H(SL)

β ⊗ CN v
αβ

(5.11)

whereN γ

αβ are the fusion coefficients ofQN , i.e. more explicitly,

H(CAR)
+ = H(Bos)

◦ ⊗H(SL)
◦ ⊕H(Bos)

v ⊗H(SL)
v ⊕

N−1⊕
α=1

H(Bos)
α ⊗H(SL)

α

⊕
{
H(Bos)

s ⊗H(SL)
s ⊕H(Bos)

c ⊗H(SL)
c for N even

H(Bos)
s ⊗H(SL)

c ⊕H(Bos)
c ⊗H(SL)

s for N odd

H(CAR)
− = H(Bos)

◦ ⊗H(SL)
v ⊕H(Bos)

v ⊗H(SL)
◦ ⊕

N−1⊕
α=1

H(Bos)
α ⊗H(SL)

α

⊕
{
H(Bos)

s ⊗H(SL)
c ⊕H(Bos)

c ⊗H(SL)
s for N even

H(Bos)
s ⊗H(SL)

s ⊕H(Bos)
c ⊗H(SL)

c for N odd.

(5.12)
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On the other hand, it is not difficult to check—some details are provided in appendix B—
that the characters ofH(CAR)

+ andH(CAR)
− (i.e. the characters of the irreducible modules of

CARZ2) can be decomposed as

χ
[Z2]
+ = χ (Orb)

◦ χ(SO)
◦ + χ (Orb)

v χ(SO)
v + χ (Orb)

s χ(SO)
s + χ (Orb)

c χ(SO)
c +

N−1∑
α=1

χ (Orb)
α χ(SO)

α

χ
[Z2]
− = χ (Orb)

◦ χ(SO)
v + χ (Orb)

v χ(SO)
◦ + χ (Orb)

s χ(SO)
s + χ (Orb)

c χ(SO)
c +

N−1∑
α=1

χ (Orb)
α χ(SO)

α

(5.13)

into products of irreducible charactersχ (Orb) of the c = 1 orbifold theoryOrbN and of
irreducible charactersχ(SO) of the level two ŝo(2N) WZW theory. Now comparing
equations (5.12) and (5.13) (and recalling thatχ (Orb)

s = χ (Orb)
c as well asχ(SO)

s = χ(SO)
c )

leads us to the conclusion that the sectors of the gauge-invariant algebras(F(Bos))
QN

and (F(SL))
QN indeed coincide with those ofOrbN and SO2N , respectively. This finally

reproduces the statement of our claim.
We further support our claim by the following consideration. Recall thatϑ ∈ Aut

(
F
Z2N
)

satisfiesϑ2 = id. This implies thatζ andϑ fulfil

ζ 2N = id ζ ◦ ϑ ◦ ζ = ϑ ϑ2 = id. (5.14)

Thus they provide a representation of the dihedral groupD2N = Z2NoZ2 by automorphisms
of F

Z2N (diag). We can therefore consider the algebra
(
F
Z2N
)D2N , which is the invariant part

of F
Z2N (diag) with respect to the automorphismsξ̃ andθ , or what is the same, the invariant

part ofF with respect toξ , ξ̃ andθ . Now ξ , ξ̃ andθ provide a representation of a subgroup
KN ⊂ QN ×QN that is obtained by adjoining the diagonal generator(y, y) to Z2N ×Z2N .
Note that [QN × QN : KN ] = 2 and that the diagonal subgroupZ(diag)

2N ⊂ KN is normal.

Now KN/Z
(diag)
2N
∼= D2N , and this is the reason why the restrictionsζ and ϑ of ξ̃ and θ

provide a representation ofD2N in Aut
(
F
Z2N
)
. We conclude that

(F(Bos;2N) ⊗ F(SL;2N))QN×QN ⊂ F
KN ≡ (FZ2N

)D2N (5.15)

or in other words,

OrbN ⊗ SO2N ⊂ CARD2N . (5.16)

As it is a rather tedious calculation, we refrain from applying the whole machinery of
section 2 to the (gauge) subgroupKN = H ⊂ G = QN×QN . Rather, we restrict the
discussion to confirming the validity of theZ2-type inclusion (5.16), which is achieved by the
following argument. Under the action ofCARD2N ∼= F

KN the vacuum sectorH0 = H(CAR)

of F
Z2N (diag) splits into sectors labelled bŷD2N , and as the inclusion (5.16) is ofZ2-type,

in this process each sector can split into at most twoF
QN×QN -sectors. Now the groupD2N

is precisely represented in Aut(CAR) by the automorphisms (5.7) and (5.8), while for the
characters ofCARD2N we obtain

χ [D2N ]
◦ = χ (Orb)

◦ χ(SO)
◦ + χ (Orb)

v χ(SO)
v χ [D2N ]

v = χ (Orb)
◦ χ(SO)

v + χ (Orb)
v χ(SO)

◦
χ [D2N ]

s = χ (Orb)
s χ(SO)

s + χ (Orb)
c χ(SO)

c χ [D2N ]
c = χ (Orb)

s χ(SO)
s + χ (Orb)

c χ(SO)
c

χ [D2N ]
α = χ (Orb)

α χ(SO)
α for α ∈ {1, 2, . . . , N−1}.

(5.17)
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(for more details, see appendix B). Again we conclude by comparison that (5.17) precisely
corresponds to the decomposition ofCARD2N -sectors into tensor products of the sectors of
OrbN andSO2N†.

The above arguments in favour of our claims are certainly not rigorous, because we
employ the Virasoro-specialized characters which do not encode the complete structure of
the respective vector spaces. Nevertheless our claims are bound to be correct. For instance,
it would otherwise be a complete mystery why relations among characters of the type
derived above should be valid. Note, in particular, that our formulae hold simultaneously
for all values of the integerN . Moreover, the quite different arguments that we will present
in the following section provide further support to our claims.

6. Fourier modes of the observables

In this section we express the Fourier modes of the observables for the various models of
our interest through the Fourier modes of the free fermions. This will in particular allow
us to confirm various statements made earlier from a different point of view.

We first need to define a normal ordering of bilinears of fermion modes. We adopt the
convention that the symbolair (r ∈ Z + 1

2, i ∈ {1, 2, . . . ,2N}), stands for either of the
Fourier modesbir or cir of the fermions. Our normal-ordering prescription then reads

:airajs : :=
{
aira

j
s for s > 0

−ajs air for s < 0.
(6.1)

One now checks by direct computation that the combinations

J ijm :=
∑
r∈Z+ 1

2

:birc
j
m−r : (6.2)

with i, j ∈ {1, 2, . . . ,2N} andm ∈ Z satisfy the commutation relations[
J ijm , J

kl
n

] = δjkJ ilm+n − δilJ kjm+n +mδjkδilδm+n,01 (6.3)

and hence span a level onêgl(2N) current algebra. More precisely, this Lie algebra is the
direct sum of a level onêsl(2N) affine Kac–Moody algebra and aû(1) current algebra. The
generators of the level onêsl(2N) algebra consist of the linear combinations

Hi
m := J iim − J i+1 i+1

m for i = 1, 2, . . . ,2N−1 (6.4)

and of

Eijm := J ijm for i 6= j. (6.5)

The zero modes (m = 0) generate a subalgebra isomorphic to the simple Lie algebra
sl(2N). In particular, the modesHi

0 span the Cartan subalgebra ofsl(2N), and for i < j

theEij0 constitute the raising operators ofsl(2N), corresponding to the positivesl(2N)-roots
αij ≡ α(i) + α(i+1) + · · · + α(j−2) + α(j−1) (whereα(k) denote the simple roots ofsl(2N)),

† Another indirect confirmation of our claim follows from the following observation. In the spaceH(CAR) there
must be simultaneous highest-weight vectors ofOrbN and SO2N which correspond to the blocks that appear in
the decomposition (5.17). In [9] we determined the larger set of simultaneous highest-weight vectors ofSO2N and
the orbifold Virasoro algebra. Now inspecting the orbifold conformal weights of those vectors one learns that the
simultaneous highest-weight vectors ofOrbN andSO2N are given by the zero grade (n = 0) vectors among those
in (8.8), (8.11), (8.12), (8.13) and also (10.12) and (10.13) of [9]. One can check that theD2N transformation
properties of these vectors are indeed in agreement with the sector decomposition (5.17).
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while for j < i they are lowering operators, corresponding to the negativesl(2N)-roots
−αji . The û(1) current algebra is spanned by

Jm := 1√
2N

2N∑
i=1

J iim (6.6)

with relations

[Jm, Jn] = δm+n,01. (6.7)

The ∗-operation acts on the currents (6.2) as
(
J
ij
m

)∗ = J
ji
−m, and their commutation

relations with the fermion modes read[
J ijm , b

k
r

] = δj,kbim+r [
J ijm , c

k
r

] = −δi,kcjm+r (6.8)

so that, in particular,[
Jm, b

i
r

] = 1√
2N

bim+r
[
Jm, c

i
r

] = − 1√
2N

cim+r . (6.9)

In addition to the current algebra, the free fermions also bring along a Virasoro algebra,
with generators

L(CAR)
m = − 1

2

∑
r∈Z+ 1

2

2N∑
i=1

(
r − 1

2m
)
:bircim−r :. (6.10)

Let us now interpret these observations from the perspective of sections 3 and 4. The
(unbounded) observables of thesl(2N) level one WZW theory are well known [8]. They
consist precisely of thêsl(2N) currents with modes (6.4) and (6.5), together with fields that
are obtainable from the currents by taking derivatives and forming normal-ordered products.
Among the latter there is, in particular, the associated Sugawara energy–momentum tensor,
the Fourier modes of which are given by the affine Sugawara formula

L(SL)
m =

∑
n∈Z

( 2N∑
i,j=1
i<j

:J ijn J
ji
m−n: + 1

2

2N∑
i,j=1

Gij :Hi
nH

j
m−n:

)
(6.11)

(Gij denotes the inverse of the Cartan matrix ofsl(2N), and the normal-ordering prescription
is similar to the one in (6.1)), and hence they lie in a suitable completion of the universal
enveloping algebra of the current modes.

It follows that in order to be in agreement with the isomorphism (4.3), the observable
algebrasBosN(I) of thec = 1 theory are given by the commutants ofSL2N in CAR(I )Z2N .
This certainly includes the bounded local functions of theû(1) currentJ † as well as those
of the associated energy–momentum tensor whose modes are

L(Bos)
m = 1

2

∑
n∈Z

:JnJm−n:. (6.12)

(By carefully treating multiple normal orderings of the fermion modes, one can check that
L(Bos)
m +L(SL)

m = L(CAR)
m .) We are now looking for further unbounded observables associated

to theBosN theory. In particular, we would like to find expressions that commute with the
ŝl(2N) modes and can be interpreted as the Fourier modes of fieldsφ that have integral
conformal weight1(φ) (with respect toL(CAR)

0 ) and that can play the role of primary
conformal fields in the sense of [14]. Then the associated local bounded functions should

† Thus in particular the currents associated toF(Bos)⊗F(SL) are represented in the form of a tensor product, i.e.

the û(1) current acts asJ ⊗1 while the ŝl(2N) currents act as1⊗Hi
m and1⊗Eijm .



CFT fusion rules, DHR gauge groups and CAR algebras 3517

be elements ofBosN . Taking into account the isomorphism (4.3), we have to expect that
these modes areZ2N -invariant infinite series of normal-ordered products of fermion modes;
moreover, we in fact need only to consider normal-ordered multilinears which are summed
over like

φ
i1i2...ip
m =

∑
r1,r2,...,rp−1

∈Z+ 1
2

:ai1r1a
i2
r2
· · · aip−1

rp−1a
ip
m−r1−r2−···−rp−1

: (6.13)

with p = 21(φ) even. In addition, we can focus our attention to a small subset of these
unbounded observables, namely to those from which all others can be obtained by the
operations of taking derivatives and of forming normal-ordered products; for brevity, we
will refer to this subset as thebasic (unbounded) observables.

Now by a suitable relabelling of the summation indices on the right-hand side of (6.13)
we deduce from the anticommutativity of theb (respectivelyc) modes among themselves
that we can assume that equalityik = il for k 6= l appears only if one is dealing with
two different types of modes, i.e. only ifaikrk = bikrk andailrl = cilrl (or the other way round).
Employing the basic commutation relations (6.8) to compute the commutator ofφ

i1i2...ip
m

with J jkn one then finds the following. First note that expressions which are neutral with
respect to the gauge groupZ2N (4.9) must involve products for which the numbers ofb
andc factors differ by a multiple of 2N . Now when (6.13) contains an equal number ofb

andc modes, then it commutes with thêsl(2N) currents precisely if it is a normal-ordered
product of the Fourier modes of theû(1) currentJ (i.e. theJm (6.6)) and/or its derivatives.
A similar analysis shows that for any otherZ2N -neutral combinationX to commute with
the ŝl(2N) currents it is necessary and sufficient thatX is obtainable by taking derivatives
and/or forming normal-ordered products of theû(1) current modes and of the modes†

Bm :=
∑

r1,r2,...,r2N−1

∈Z+ 1
2

b1
r1
b2
r2
· · · b2N−1

r2N−1
b2N
m−r1−r2−···−r2N−1

Cm :=
∑

r1,r2,...,r2N−1

∈Z+ 1
2

c1
r1
c2
r2
· · · c2N−1

r2N−1
c2N
m−r1−r2−···−r2N−1

.
(6.14)

One can check that the point-like localized fields which have (6.14) as their Fourier modes,
namelyB(z) := ∑

m∈Z z
m−NBm = b1(z)b2(z) · · · b2N(z) and C(z) := ∑

m∈Z z
m−NCm =

c1(z)c2(z) · · · c2N(z), are primary conformal fields and have conformal weight1(B) =
1(C) = N , both with respect to the fermion energy–momentum tensor (6.10) and with
respect to thec = 1 energy–momentum tensor (6.12) (which is compatible because they
commute with thêsl(2N) current algebra and hence with its energy–momentum tensor).

We conclude that the basic observables of thec = 1 theory consist of thêu(1) current
and the fieldsB and C, which are related by charge conjugation. This is in complete
agreement with the description of the observables that was given in [12]. The commutation
relations of the modes (6.14) are of the form

[Bm,Bn] = 0= [Cm,Cn]

[Bm,Cn] = p1δm+n,01− p2J̃m+n + 1
2p3

(
:J̃ 2: − ∂J̃ )

m+n + · · ·
(6.15)

where

pj ≡ pm,N;j := 1

(2N − j)!
2N−j∑
`=1

(m−N + j + `− 1) (6.16)

† The summations ensure locality. Also note that owing to
[
bir , b

j
s

] = 0= [cir , cjs ] no normal ordering is required
here.
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for j ∈ N and

J̃m :=
√

2NJm (6.17)

and where the ellipsis stands for further terms involvingj -fold normal-ordered products of
the currents (combined with terms involving derivatives, in a similar way as for:J̃ 2:− ∂J̃ )
and coefficients whosem andN dependence takes the form ofpj , for j = 4, 5, . . . ,2N−1.

Note that forN = 1, the relations (6.15) amount to the statement that besides theŝl(2)
affine Lie algebra with generators (6.4) and (6.5), i.e.

J+m := E12
m =

∑
r∈Z+ 1

2

:b1
r c

2
m−r : J−m := E21

m =
∑
r∈Z+ 1

2

:b2
r c

1
m−r :

J 0
m := H 1

m =
∑
r∈Z+ 1

2

(
:b1
r c

1
m−r : − :b2

r c
2
m−r :

) (6.18)

another (relatively commuting) level onêsl(2) algebra is present, namely the one generated
by

K+m := iBm = i
∑
r∈Z+ 1

2

:b1
r b

2
m−r : K−m := iCm = i

∑
r∈Z+ 1

2

:c1
r c

2
m−r :

K0
m :=

√
2Jm =

∑
r∈Z+ 1

2

(
:b1
r c

1
m−r : + :b2

r c
2
m−r :

)
.

(6.19)

(In a different context, this has also been observed in [15].)
Next, let us study the observables which stay fixed underQN , i.e. those which are the

observables of the orbifold and̂so(2N) theories. According to the results of section 5, we
need to implement the additionalZ2 transformation which operates on the fermion modes
as the exchangeϑ (5.8). We first note thatϑ acts on thêgl(2N) current modes (6.2) as

ϑ
(
J ijm
) = −J jim (6.20)

so that the invariant combinations are

I ijm := J ijm − J jim (6.21)

for m ∈ Z and i, j ∈ {1, 2, . . . ,2N} with i < j . It follows from the commutation relations
(6.3) that these modes span a level twôso(2N) affine Kac–Moody algebra. This is also
easily understood by realizing that the real and imaginary partsuir and vir of the fermion
modes, defined by

bir := 1√
2

(
uir + ivir

)
cir := 1√

2

(
uir − ivir

)
(6.22)

which satisfyϑ
(
uir
) = uir andϑ

(
vir
) = −vir , constitute the Fourier modes of a two sets of real

free fermions. Each of these realizes a real CAR algebra, and they mutually anticommute.
The combinations (6.21) are expressed through these fermion modes by

I ijm = 1
2

∑
r∈Z+ 1

2

(
:uiru

j
m−r : − :ujr uim−r : + :virv

j
m−r : − :vjr vim−r :

)
=

∑
r∈Z+ 1

2

(
:uiru

j
m−r : + :virv

j
m−r :

)
. (6.23)

It then follows immediately (compare e.g. [9]) that we are indeed dealing with a level two
ŝo(2N) affine Lie algebra.

Now we use again the knowledge that the basic observables of a WZW theory are
given by the currents. From the inclusion (5.16) we therefore conclude that the observables
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OrbN of the orbifold theory are contained in the commutant of the current algebra in the
algebraCARD2N . As this is a proper inclusion, we cannot completely determine the orbifold
observables this way. Nevertheless we can make a few observations which can be compared
to the literature. First, thêu(1) current modes (6.6), which in terms of the real fermions read
Jm = i(2N)−1/2∑

r∈Z+1/2

∑2N
i=1 v

i
ru
i
m−r , transform asϑ(Jm) = −Jm and hence definitely

do not belong toOrbN . Also, among the linear combinations of thec = 1 observables
(6.14), onlyBm + Cm areϑ-invariant; comparison with the results of [7] shows that they
belong indeed to the basic unbounded observables of the orbifold theory, and hence the
corresponding bounded functions are elements ofOrbN . However, there are still further
basic observables. These include in particular the energy–momentum tensor, whose modes
can be written as

L(Orb)
m = L(CAR)

m − L(SO)
m (6.24)

(analogously toL(Bos)
m = L(CAR)

m −L(SL)
m ), whereL(SO)

m is obtained from thêso(2N) currents
(6.21) by the Sugawara formula. In terms of the fermion modes, this is a normal-ordered
product which contains the fermion modes only in the quadratic formuiru

i
s and vjr v

j
s .

According to [7] there is one other primary conformal field which is a basic observable,
namely the combination:J 4: − 2:J∂2J : + 3

2:(∂J )2:.
In the special caseN = 1 the current algebrâso(2N) degenerates tôu(1), with

modesI 12
m =

∑
r∈Z+1/2

(
:u1
r u

2
m−r : + :v1

r v
2
m−r :

)
, or in terms of theŝl(2) modes (6.18),

I 12
m = J+m − J−m . Similarly, the orbifold observablesBm + Cm becomeBm + Cm =
−i(K+m + K−m) =

∑
r∈Z+1/2

(
:u1
r u

2
m−r : − :v1

r v
2
m−r :

)
, which again generate âu(1) current

algebra. In fact, in this case we are dealing with the tensor product of twoc = 1 circle
theories, each corresponding to the valueN(Bos) = 4 of the integer that labels the circle
theories.

Finally, we note that by construction the real fermionsui andvi are of Neveu–Schwarz
type. In terms of the orbifold and̂so(2N) theories, this corresponds to the fact that we are
dealing with untwisted sectors only. In order to investigate the twisted sectors as well, one
would have to include also real fermions of Ramond type. Since for genericN the twisted
sectors have non-integral statistical dimension, they are not covered by the conventional
DHR formalism, and hence are definitely beyond the scope of our present paper. On the
other hand, whenN is a square number, then the statistical dimension of the twisted sectors
is integral, and correspondingly an interpretation in terms of a DHR gauge group might
again exist. At present we do not know of such an interpretation. But it is easy to see that
such a gauge group would have to be an extension ofQN by Z2. Moreover, it is likely that
this extension should be central, in such a way that the twisted sectors can be interpreted as
projective representations of the factor groupQN . (ForN = 1, this possibility is realized
rather trivially as the extension fromQ1 ≡ Z4 to Z8.)

Appendix A. The finite groupsQN and D2N

For any positive integerN , thegeneralized quaternion groupQN is by definition the discrete
group that is generated freely by elementsx andy modulo the relations†

x2N = 1 xyx = y y2 = xN . (A.1)

This is a finite group of order|QN | = 4N . It has four one-dimensional representations
πo, πv, πs, πc, as well asN − 1 two-dimensional representationsπm with representing

† The first of these relations is not independent. We keep it to demonstrate the similarity with (A.3) below.
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matrices [16]

πm(x) =
(

eiπm/N 0
0 e−iπm/N

)
πm(y) =

(
0 (−1)m

1 0

)
. (A.2)

The conjugacy classes and characters ofQN are displayed in table A1. From the character
table it follows in particular that the subring of the representation ring that is furnished by
the one-dimensional representations is the group ring ofZ2 × Z2 whenN is even, and the
group ring ofZ4 whenN is odd.

Table A1. Character table forQN .{
xk, x−k

} {
yx2l

∣∣ {
yx2l+1

∣∣
Class {1} (k ∈ {1, 2, . . . , N − 1}) {

xN
}

l = 0, 1, . . . , N − 1
}

l = 0, 1, . . . , N − 1
}

χo 1 1 1 1 1
χv 1 1 1 −1 −1
χs 1 (−1)k (−1)N iN −iN

χc 1 (−1)k (−1)N −iN iN

χm 2 2 cos(πmk/N) 2(−1)m 0 0

Table A2. Character table forD2N .{
x̃k, x̃−k

} {
ỹx̃2l

∣∣ {
ỹx̃2l+1

∣∣
Class {1} (k ∈ {1, 2, . . . , N − 1}) {

x̃N
}

l = 0, 1, . . . , N − 1
}

l = 0, 1, . . . , N − 1
}

χo 1 1 1 1 1
χv 1 1 1 −1 −1
χs 1 (−1)k (−1)N −1 1
χc 1 (−1)k (−1)N 1 −1
χm 2 2 cos(πmk/N) 2(−1)m 0 0

The cyclic groupZ2N generated byx is a normal subgroup ofQN ; QN is a non-split
extension of this normal subgroup byZ2. It is illustrative to compareQN to the dihedral
group D2N which is a split extension of its normal subgroupZ2N by Z2 and hence a
semi-direct product.D2N is by definition generated by elementsx̃, ỹ subject to the relations

x̃2N = 1 x̃ỹx̃ = ỹ ỹ2 = 1. (A.3)

We have|D2N | = 4N , and there are four one-dimensional representationsπ̃o, π̃v, π̃s, π̃c,
andN − 1 two-dimensional representationsπ̃m with matrices

π̃m(x̃) =
(

eiπm/N 0
0 e−iπm/N

)
π̃m(ỹ) =

(
0 1
1 0

)
. (A.4)

The conjugacy classes and characters ofD2N are given in table A2. It can be checked that
the representation rings of bothQN andD2N are simply reducible.

Note that for evenN the groupsQN andD2N possess identical character tables, and
hence in particular identical representation rings. Nevertheless they are not isomorphic; e.g.
in QN there is only a single element, namelyy2, of order two, while inD2N there are many.
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Appendix B. Characters

In [9] we considered two speciesui andvi of real free fermions. An action of the group
O(2) (which can be interpreted as a DHR gauge group of the free fermion theory) was
defined by

γt
(
uir
) = cos(t)uir − sin(t)vir γt

(
vir
) = sin(t)uir + cos(t)vir (B.1)

wheret ∈ R, and

η
(
uir
) = uir η

(
vir
) = −vir . (B.2)

In terms of the complex fermionsbir andcir (see equation (6.22)) this reads

γt (b
i
r ) = eit bir γt (c

i
r ) = e−it cir η(bir ) = cir η(cir ) = bir . (B.3)

It is obvious that by restricting this action to the naturally embedded discrete subgroup
D2N ⊂ O(2) we just recover the automorphisms (5.7) and (5.8):ζ1 = γπ/N , ϑ = η.

As in [9] we will use the labelling

Ô(2) = {0, J } ∪ N (B.4)

for the group dual ofO(2). In [9] we computed the characters of the sectors ofCARO(2);
they read

χ
[O(2)]
0 = 20(q)

2(ϕ(q))2N
+ (ϕ(q))2N

2(ϕ(q2))2N
χ

[O(2)]
J = 20(q)

2(ϕ(q))2N
− (ϕ(q))2N

2(ϕ(q2))2N

χ [O(2)]
m = 2m(q)

(ϕ(q))2N
for m ∈ N

(B.5)

with ϕ and2m as defined in (4.15) and (4.16). Now upon induction fromD2N to O(2) the
irreducibleD2N -representations split into irreducibleO(2)-representations as

indO(2)D2N

(
π(D2N )◦

) = π(O(2))0 ⊕
∞⊕
n=1

π
(O(2))
2nN indO(2)D2N

(
π(D2N )

v

) = π(O(2))J ⊕
∞⊕
n=1

π
(O(2))
2nN

indO(2)D2N

(
π(D2N )

s

) = indO(2)D2N

(
π(D2N )

c

) = ∞⊕
n=1

π
(O(2))
(2n−1)N

indO(2)D2N

(
π(D2N )
α

) = ∞⊕
n=1

(
π
(O(2))
2(n−1)N+α ⊕ π(O(2))2nN−α

)
for α ∈ {1, 2, . . . , N−1}.

(B.6)

Consequently, we haveχ [D2N ]
◦ = χ

[O(2)]
0 + ∑∞

n=1 χ
[O(2)]
2nN , etc, and hence we find the

expressions

χ [D2N ]
◦ (q) = ψ0(q)

20(q)

2(ϕ(q))2N
+ (ϕ(q))2N

2(ϕ(q2))2N

χ [D2N ]
v (q) = ψ0(q)

20(q)

2(ϕ(q))2N
− (ϕ(q))2N

2(ϕ(q2))2N

χ [D2N ]
s (q) = χ [D2N ]

c (q) = 1

2
q−N/4ψN(q)

2N(q)

(ϕ(q))2N

χ [D2N ]
α (q) = q−α2/4Nψα(q)

2α(q)

(ϕ(q))2N
α ∈ {1, 2, . . . , N−1}

(B.7)

with ψa as defined in (4.17), for the characters of theCARD2N sectors. By comparison with
the characters of the sectors ofOrbN andSO2N (given e.g. in [9]), it is then easily checked
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that indeed the identities (5.17) hold. Moreover, by restricting further theD2N -action to the
Z2-action ofϑ (corresponding to the elementỹ of D2N ), we obtain

indD2N
Z2

(
π
(Z2)+
) = π(D2N )◦ ⊕ π(D2N )

c ⊕
N−1⊕
α=1

π(D2N )
α

indD2N
Z2

(
π
(Z2)−
) = π(D2N )

v ⊕ π(D2N )
s ⊕

N−1⊕
α=1

π(D2N )
α

(B.8)

whereπ(Z2)+ ≡ id andπ(Z2)− denote the two irreducible representations ofZ2. The identities
(5.13) then immediately follow as a consequence of (5.17).
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